Fuzzy k-Means: history and applications

IF 2 Q2 ECONOMICS
Maria Brigida Ferraro
{"title":"Fuzzy k-Means: history and applications","authors":"Maria Brigida Ferraro","doi":"10.1016/j.ecosta.2021.11.008","DOIUrl":null,"url":null,"abstract":"<div><p><span>The fuzzy approach to clustering arises to cope with situations where objects have not a clear assignment. Unlike the hard/standard approach where each object can only belong to exactly one cluster, in a fuzzy setting, the assignment is soft; that is, each object is assigned to all clusters with certain membership degrees<span> varying in the unit interval. The best known fuzzy clustering algorithm is the fuzzy </span></span><span><math><mi>k</mi></math></span>-means (F<span><math><mi>k</mi></math></span>M), or fuzzy <span><math><mi>c</mi></math></span>-means. It is a generalization of the classical <span><math><mi>k</mi></math></span>-means method. Starting from the F<span><math><mi>k</mi></math></span><span>M algorithm, and in more than 40 years, several variants have been proposed. The peculiarity of such different proposals depends on the type of data to deal with, and on the cluster shape. The aim is to show fuzzy clustering alternatives to manage different kinds of data, ranging from numeric, categorical or mixed data to more complex data structures, such as interval-valued, fuzzy-valued or functional data, together with some robust methods. Furthermore, the case of two-mode clustering is illustrated in a fuzzy setting.</span></p></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"30 ","pages":"Pages 110-123"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452306221001398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The fuzzy approach to clustering arises to cope with situations where objects have not a clear assignment. Unlike the hard/standard approach where each object can only belong to exactly one cluster, in a fuzzy setting, the assignment is soft; that is, each object is assigned to all clusters with certain membership degrees varying in the unit interval. The best known fuzzy clustering algorithm is the fuzzy k-means (FkM), or fuzzy c-means. It is a generalization of the classical k-means method. Starting from the FkM algorithm, and in more than 40 years, several variants have been proposed. The peculiarity of such different proposals depends on the type of data to deal with, and on the cluster shape. The aim is to show fuzzy clustering alternatives to manage different kinds of data, ranging from numeric, categorical or mixed data to more complex data structures, such as interval-valued, fuzzy-valued or functional data, together with some robust methods. Furthermore, the case of two-mode clustering is illustrated in a fuzzy setting.

模糊 k-Means:历史与应用
模糊聚类法的出现是为了应对对象分配不明确的情况。与硬/标准方法不同的是,在硬/标准方法中,每个对象只能属于一个聚类,而在模糊方法中,分配是软性的;也就是说,每个对象都会被分配到在单位区间内具有一定成员度的所有聚类中。最著名的模糊聚类算法是模糊 K-means(FkM)或模糊 C-means。它是对经典 k-means 方法的概括。从 FkM 算法开始,40 多年来,人们提出了多种变体。这些不同方案的特殊性取决于要处理的数据类型和聚类形状。本文旨在展示模糊聚类的替代方法,以管理不同类型的数据,从数值数据、分类数据或混合数据到更复杂的数据结构,如区间值数据、模糊值数据或函数数据,以及一些稳健的方法。此外,还说明了模糊环境下的双模式聚类情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信