{"title":"A Polynomial Fitting Improved Bayesian Reconstruction Method for Whole Brain Volumetric MRSI Metabolite Images","authors":"Yufang Bao, A. Maudsley","doi":"10.2174/1874347101307010001","DOIUrl":null,"url":null,"abstract":"In this paper, a polynomial fitting improved Bayesian approach is proposed for the reconstruction of volumetric metabolite images from long echo time (TE) whole brain proton magnetic resonance spectroscopic imaging (MRSI) data. The proposed algorithm uses a modified EM (expectation maximization) algorithm that takes into account the partial vol- ume effects contained inside a thick slice MRSI. It incorporates high resolution volumetric magnetic resonance imaging (MRI) as a priori information. It further integrates the polynomial fitting method to smooth out artificial edges before the high resolution metabolite images are reconstructed. Our proposed reconstruction method has successfully extended our existing reconstruction of two dimensional (2D) metabolite images to 3D cases. The experimental results show that reso- lution enhanced volumetric metabolite images are reconstructed.","PeriodicalId":90366,"journal":{"name":"The open medical imaging journal","volume":"460 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The open medical imaging journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874347101307010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a polynomial fitting improved Bayesian approach is proposed for the reconstruction of volumetric metabolite images from long echo time (TE) whole brain proton magnetic resonance spectroscopic imaging (MRSI) data. The proposed algorithm uses a modified EM (expectation maximization) algorithm that takes into account the partial vol- ume effects contained inside a thick slice MRSI. It incorporates high resolution volumetric magnetic resonance imaging (MRI) as a priori information. It further integrates the polynomial fitting method to smooth out artificial edges before the high resolution metabolite images are reconstructed. Our proposed reconstruction method has successfully extended our existing reconstruction of two dimensional (2D) metabolite images to 3D cases. The experimental results show that reso- lution enhanced volumetric metabolite images are reconstructed.