Speech analysis/synthesis by Gaussian mixture approximation of the speech spectrum for voice conversion

Jamal Amini, Abdoreza Sabzi Shahrebabaki, Navid Shokouhi, H. Sheikhzadeh, K. Raahemifar, M. Eslami
{"title":"Speech analysis/synthesis by Gaussian mixture approximation of the speech spectrum for voice conversion","authors":"Jamal Amini, Abdoreza Sabzi Shahrebabaki, Navid Shokouhi, H. Sheikhzadeh, K. Raahemifar, M. Eslami","doi":"10.1109/ISSPIT.2013.6781919","DOIUrl":null,"url":null,"abstract":"Voice conversion typically employs spectral features to convert a source voice to a target voice. In this paper, we propose a simple method of fitting the STRAIGHT spectrum with Gaussian mixture (GM) models for speech analysis/synthesis and spectral modification. The mean values of the Gaussians are pre-determined based on Mel-frequency spacing. The standard deviations are also adaptively adjusted using the constant-Q principle and the spectrum amplitudes. Finally, the weights of the Gaussians are determined by sampling the log-spectrum at Mel-frequencies. The proposed analysis/synthesis method (MFLS-GM) is employed for speech analysis/synthesis and voice conversion. Subjective evaluations employing MOS and ABX demonstrate superior performance of the voice conversion using the MFLS-GM compared to systems employing MFCC features. The computation cost of the proposed analysis/synthesis method is also much lower than those based on MFCC.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"12 1","pages":"000428-000433"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Voice conversion typically employs spectral features to convert a source voice to a target voice. In this paper, we propose a simple method of fitting the STRAIGHT spectrum with Gaussian mixture (GM) models for speech analysis/synthesis and spectral modification. The mean values of the Gaussians are pre-determined based on Mel-frequency spacing. The standard deviations are also adaptively adjusted using the constant-Q principle and the spectrum amplitudes. Finally, the weights of the Gaussians are determined by sampling the log-spectrum at Mel-frequencies. The proposed analysis/synthesis method (MFLS-GM) is employed for speech analysis/synthesis and voice conversion. Subjective evaluations employing MOS and ABX demonstrate superior performance of the voice conversion using the MFLS-GM compared to systems employing MFCC features. The computation cost of the proposed analysis/synthesis method is also much lower than those based on MFCC.
语音分析/合成的高斯混合近似的语音频谱的语音转换
语音转换通常使用频谱特征将源语音转换为目标语音。本文提出了一种用高斯混合(GM)模型拟合直谱的简单方法,用于语音分析/合成和谱修改。高斯分布的均值是基于mel -频率间隔预先确定的。采用恒q原理和谱幅自适应调整标准差。最后,通过对mel频率的对数谱采样来确定高斯函数的权重。提出的分析/合成方法(MFLS-GM)用于语音分析/合成和语音转换。采用MOS和ABX的主观评价表明,与采用MFCC特征的系统相比,使用MFLS-GM的语音转换性能更好。所提出的分析/综合方法的计算成本也比基于MFCC的方法低得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信