An algorithm for symbolic-numeric sparse interpolation of multivariate polynomials whose degree bounds are unknown

Dai Numahata, Hiroshi Sekigawa
{"title":"An algorithm for symbolic-numeric sparse interpolation of multivariate polynomials whose degree bounds are unknown","authors":"Dai Numahata, Hiroshi Sekigawa","doi":"10.1145/3096730.3096734","DOIUrl":null,"url":null,"abstract":"We consider the problem of sparse interpolation of a multivariate black-box polynomial in floatingpoint arithmetic. More specifically, we assume that we are given a black-box polynomial <i>f</i> (<i>x</i><sub>1</sub>,...<i>x</i><sub>n</sub>) = Σ<sup><i>t</i></sup><sub><i>j</i>=1</sub> <i>c</i><sub><i>j</i></sub><i>x</i><sub>1</sub><sup><i>d</i><sub><i>j</i>, 1</sub></sup> ...<i>x</i><sub><i>n</i></sub><sup><i>d</i><sub><i>j</i>, n</sub></sup> ∈ C[<i>x</i><sub>1</sub>,...,<i>x</i><sub><i>n</i></sub>] (<i>c<sub>j</sub></i> ≠ 0)and the number of terms <i>t</i>, and that we can evaluate the value of <i>f</i> (<i>x<sup>1</sup>,...,x<sub>n</sub>)</i> at any point in C<sup><i>n</i></sup> in floating-point arithmetic. The problem is to find the coefficients <i>c<sub>1</sub></i>, ..., <i>c<sub>t</sub></i> and the exponents <i>d<sub>1,1,</sub>..., d<sub>t,n</sub></i>. We propose an efficient algorithm to solve the problem.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"2 1","pages":"18-20"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3096730.3096734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of sparse interpolation of a multivariate black-box polynomial in floatingpoint arithmetic. More specifically, we assume that we are given a black-box polynomial f (x1,...xn) = Σtj=1 cjx1dj, 1 ...xndj, n ∈ C[x1,...,xn] (cj ≠ 0)and the number of terms t, and that we can evaluate the value of f (x1,...,xn) at any point in Cn in floating-point arithmetic. The problem is to find the coefficients c1, ..., ct and the exponents d1,1,..., dt,n. We propose an efficient algorithm to solve the problem.
阶限未知的多元多项式的符号-数值稀疏插值算法
研究浮点算法中多元黑盒多项式的稀疏插值问题。更具体地说,我们假设给定一个黑箱多项式f (x1,…xn) = Σtj=1 cjx1dj, 1…xndj, n∈C[x1,…],xn] (cj≠0)和项数t,我们可以用浮点运算求出f (x1,…,xn)在Cn上任意点的值。问题是求出系数c1,…, ct和指数d1,1,…, dt, n。我们提出了一个有效的算法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信