Item Ordering Effects with Qualitative Explanations using Online Adaptive Tutoring Data

Steven Tang, Elizabeth A. McBride, H. Gogel, Z. Pardos
{"title":"Item Ordering Effects with Qualitative Explanations using Online Adaptive Tutoring Data","authors":"Steven Tang, Elizabeth A. McBride, H. Gogel, Z. Pardos","doi":"10.1145/2724660.2728682","DOIUrl":null,"url":null,"abstract":"Online computer adaptive learning is increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing throughout a single assessment period; in contrast, traditional Item Response Theory (IRT) models assume student knowledge to be constant within an assessment period. The basic BKT model assumes that the chance a student transitions from \"not knowing\" to \"knowing\" after each item is the same, and problems are considered learning opportunities. It could be the case, however, that learning is actually context sensitive, where students' learning might be improved when the items and their associated tutoring content are delivered to the student in a particular order. In this paper, we use BKT models to find such context sensitive transition probabilities from real data delivered by an online tutoring system, ASSISTments. After empirically deriving orderings that lead to better learning, we qualitatively analyze the items and their tutoring content to uncover any mechanisms that might explain why such orderings are modeled to have higher learning potential.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2728682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Online computer adaptive learning is increasingly being used in classrooms as a way to provide guided learning for students. Such tutors have the potential to provide tailored feedback based on specific student needs and misunderstandings. Bayesian knowledge tracing (BKT) is used to model student knowledge when knowledge is assumed to be changing throughout a single assessment period; in contrast, traditional Item Response Theory (IRT) models assume student knowledge to be constant within an assessment period. The basic BKT model assumes that the chance a student transitions from "not knowing" to "knowing" after each item is the same, and problems are considered learning opportunities. It could be the case, however, that learning is actually context sensitive, where students' learning might be improved when the items and their associated tutoring content are delivered to the student in a particular order. In this paper, we use BKT models to find such context sensitive transition probabilities from real data delivered by an online tutoring system, ASSISTments. After empirically deriving orderings that lead to better learning, we qualitatively analyze the items and their tutoring content to uncover any mechanisms that might explain why such orderings are modeled to have higher learning potential.
项目排序效应与在线自适应辅导数据的定性解释
在线计算机自适应学习越来越多地用于课堂,作为一种为学生提供指导学习的方式。这样的导师有可能根据学生的具体需求和误解提供量身定制的反馈。贝叶斯知识追踪(BKT)用于在单一评估期间假设知识是变化的情况下对学生的知识进行建模;相比之下,传统的项目反应理论(IRT)模型假设学生的知识在一个评估期间是不变的。基本的BKT模型假设学生在每个项目之后从“不知道”到“知道”的机会是相同的,并且将问题视为学习机会。然而,有可能的情况是,学习实际上是上下文敏感的,当这些项目及其相关的辅导内容以特定的顺序传递给学生时,学生的学习可能会得到改善。在本文中,我们使用BKT模型从在线辅导系统ASSISTments提供的真实数据中找到上下文敏感的转移概率。在经验推导出有助于更好学习的排序之后,我们定性地分析了这些项目及其辅导内容,以揭示任何可能解释为什么这种排序被建模为具有更高学习潜力的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信