{"title":"Modelling heterogeneous dust particles: an application to cometary polarization","authors":"P. Halder, S. Ganesh","doi":"10.1093/mnras/staa3647","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a comet dust model that incorporates multiple dust morphologies along with inhomogeneous mixture of silicate minerals and carbonaceous materials under power-law size distribution, to replicate the standard polarization-phase curve observed in several comets in the narrow-band continuum. Following the results from Rosetta/MIDAS and COSIMA, we create high porosity Hierarchical Aggregates (HA) and low porosity (< 10$\\%$) Solids in the form of agglomerated debris. We also introduce a moderate porosity structure with solids in the core, surrounded by fluffy aggregates called Fluffy Solids (FS). We study the mixing combinations, (HA and Solids), (HA and FS) and (HA, FS and Solids) for a range of power-law index n=2.0 to 3.0 for different sets of mixing percentage of silicate minerals and carbonaceous materials. Polarimetry of the short period comets 1P/Halley and 67P/Churyumov-Gerasimenko match best with the polarisation resulting from the combination of HA and Solids while the combinations (HA and FS) and (HA, FS and Solids) provide the best fit results for the long period comets C/1995 O1 (Hale-Bopp) and C/1996 B2 (Hyakutake). The best fit model results also recreate the observed wavelength dependence of polarization. Our dust model agree with the idea that the long period comets may have high percentage of loose particles (HA and FS) compared to those in the case of short period comets as the short period comets experience more frequent and/or higher magnitude of weathering.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"342 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this work, we introduce a comet dust model that incorporates multiple dust morphologies along with inhomogeneous mixture of silicate minerals and carbonaceous materials under power-law size distribution, to replicate the standard polarization-phase curve observed in several comets in the narrow-band continuum. Following the results from Rosetta/MIDAS and COSIMA, we create high porosity Hierarchical Aggregates (HA) and low porosity (< 10$\%$) Solids in the form of agglomerated debris. We also introduce a moderate porosity structure with solids in the core, surrounded by fluffy aggregates called Fluffy Solids (FS). We study the mixing combinations, (HA and Solids), (HA and FS) and (HA, FS and Solids) for a range of power-law index n=2.0 to 3.0 for different sets of mixing percentage of silicate minerals and carbonaceous materials. Polarimetry of the short period comets 1P/Halley and 67P/Churyumov-Gerasimenko match best with the polarisation resulting from the combination of HA and Solids while the combinations (HA and FS) and (HA, FS and Solids) provide the best fit results for the long period comets C/1995 O1 (Hale-Bopp) and C/1996 B2 (Hyakutake). The best fit model results also recreate the observed wavelength dependence of polarization. Our dust model agree with the idea that the long period comets may have high percentage of loose particles (HA and FS) compared to those in the case of short period comets as the short period comets experience more frequent and/or higher magnitude of weathering.