Early Warning Analysis of Grid Ferromagnetic Resonance Overvoltage Risk Based on Multi-source Data

Gou Yu
{"title":"Early Warning Analysis of Grid Ferromagnetic Resonance Overvoltage Risk Based on Multi-source Data","authors":"Gou Yu","doi":"10.13052/dgaej2156-3306.3863","DOIUrl":null,"url":null,"abstract":"In the impartial factor ungrounded system, ferromagnetic resonance overvoltage is a frequent fault that lasts for a lengthy time and is hazardous to the grid. In this paper, the mechanism of grid ferromagnetic resonance overvoltage is first explored in depth. The precept of impartial voltage shift and ferromagnetic resonance brought about through PT saturation is analyzed with the aid of graphical and mathematical analysis. Then, the characteristics of fault current information are extracted by wavelet transform, and indicators such as wavelet fault degree, wavelet singularity and wavelet energy measurement are obtained respectively. D-S evidence theory is used to fuse multi-source information of electrical volume and switching quantity, so as to obtain comprehensive fault results of power grid more accurately. Finally, based on the time series risk assessment, the distribution network time series risk index is calculated, the risk level and risk area of each period are determined, and the early warning results are issued. Finally, an example is given to verify the effectiveness of the proposed method.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the impartial factor ungrounded system, ferromagnetic resonance overvoltage is a frequent fault that lasts for a lengthy time and is hazardous to the grid. In this paper, the mechanism of grid ferromagnetic resonance overvoltage is first explored in depth. The precept of impartial voltage shift and ferromagnetic resonance brought about through PT saturation is analyzed with the aid of graphical and mathematical analysis. Then, the characteristics of fault current information are extracted by wavelet transform, and indicators such as wavelet fault degree, wavelet singularity and wavelet energy measurement are obtained respectively. D-S evidence theory is used to fuse multi-source information of electrical volume and switching quantity, so as to obtain comprehensive fault results of power grid more accurately. Finally, based on the time series risk assessment, the distribution network time series risk index is calculated, the risk level and risk area of each period are determined, and the early warning results are issued. Finally, an example is given to verify the effectiveness of the proposed method.
基于多源数据的电网铁磁谐振过电压风险预警分析
在公正因素不接地系统中,铁磁谐振过电压是一种持续时间较长的常见故障,对电网的危害较大。本文首次深入探讨了电网铁磁谐振过电压产生的机理。通过图形和数学分析,分析了PT饱和引起的电压偏移和铁磁共振的规律。然后,通过小波变换提取故障电流信息的特征,分别得到小波故障度、小波奇异性和小波能量测量等指标;采用D-S证据理论,融合电容量和开关量的多源信息,从而更准确地获得电网的综合故障结果。最后,在时间序列风险评估的基础上,计算配电网时间序列风险指数,确定各时期的风险等级和风险区域,并发布预警结果。最后通过一个算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信