Neutron wave propagation in finite assemblies of graphite

Ashok Kumar , Feroz Ahmed, L.S. Kothari
{"title":"Neutron wave propagation in finite assemblies of graphite","authors":"Ashok Kumar ,&nbsp;Feroz Ahmed,&nbsp;L.S. Kothari","doi":"10.1016/0022-3107(73)90066-X","DOIUrl":null,"url":null,"abstract":"<div><p>Neutron-wave propagation in graphite assemblies of finite transverse dimensions has been studied in the diffusion theory approximation using multigroup (30 groups) approach and energy dependent boundary conditions. Frequency dependence of the thirty eigenvalues is discussed. It is shown that the critical frequency <span><math><mtext>f</mtext><msup><mi></mi><mn>∗</mn></msup></math></span> depends upon transverse size. For infinite transverse size <span><math><msup><mi></mi><mn>∗</mn></msup></math></span> is nearly equal to 130 Hz whereas for some critical transverse dimensions (in the present case it lies between 80 × 80 cm<sup>2</sup> and 70 × 70 cm<sup>2</sup>) <sup>∗</sup> becomes zero. The existence of a pseudo-discrete mode in the continuum is discussed. Strong interference between the cold neutron density and the ’epicold‘ neutron density is predicted at some specific distance from the source. The position and intensity of interference is found to depend upon the frequency of the wave, the transverse size of the assembly, the energy spectrum of the source neutrons and the temperature of moderator. Neutron wave propagation in finite assemblies of graphite at 200°K and 150°K is also discussed.</p></div>","PeriodicalId":100811,"journal":{"name":"Journal of Nuclear Energy","volume":"27 7","pages":"Pages 485-509"},"PeriodicalIF":0.0000,"publicationDate":"1973-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0022-3107(73)90066-X","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/002231077390066X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Neutron-wave propagation in graphite assemblies of finite transverse dimensions has been studied in the diffusion theory approximation using multigroup (30 groups) approach and energy dependent boundary conditions. Frequency dependence of the thirty eigenvalues is discussed. It is shown that the critical frequency f depends upon transverse size. For infinite transverse size is nearly equal to 130 Hz whereas for some critical transverse dimensions (in the present case it lies between 80 × 80 cm2 and 70 × 70 cm2) becomes zero. The existence of a pseudo-discrete mode in the continuum is discussed. Strong interference between the cold neutron density and the ’epicold‘ neutron density is predicted at some specific distance from the source. The position and intensity of interference is found to depend upon the frequency of the wave, the transverse size of the assembly, the energy spectrum of the source neutrons and the temperature of moderator. Neutron wave propagation in finite assemblies of graphite at 200°K and 150°K is also discussed.

中子波在有限石墨组件中的传播
利用多群(30群)方法和能量依赖的边界条件,在扩散理论近似中研究了有限横维石墨组件中的中子波传播。讨论了30个特征值的频率相关性。结果表明,临界频率f *与横向尺寸有关。对于无限的横向尺寸,∗几乎等于130hz,而对于某些临界横向尺寸(在本例中,它介于80 × 80 cm2和70 × 70 cm2之间),∗变为零。讨论了连续介质中伪离散模态的存在性。预测在距离源一定距离处,冷中子密度和“表老中子”密度之间存在强干涉。发现干涉的位置和强度取决于波的频率、组件的横向尺寸、源中子的能谱和慢化剂的温度。讨论了在200°K和150°K下,中子波在石墨有限组件中的传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信