Dynamical topological excitations in parafermion chains

Vilja Kaskela, J. Lado
{"title":"Dynamical topological excitations in parafermion chains","authors":"Vilja Kaskela, J. Lado","doi":"10.1103/PHYSREVRESEARCH.3.013095","DOIUrl":null,"url":null,"abstract":"Topological excitations in many-body systems are one of the paradigmatic cornerstones of modern condensed matter physics. In particular, parafermions are elusive fractional excitations potentially emerging in fractional quantum Hall-superconductor junctions, and represent one of the major milestones in fractional quantum matter. Here, by using a combination of tensor network and kernel polynomial techniques, we demonstrate the emergence of zero modes and finite energy excitations in many-body parafermion chains. We show the appearance of zero energy modes in the many-body spectral function at the edge of a topological parafermion chain, their relation with the topological degeneracy of the system, and we compare their physics with the Majorana bound states of topological superconductors. We demonstrate the robustness of parafermion topological modes with respect to a variety of perturbations, and we show how weakly coupled parafermion chains give rise to in-gap excitations. Our results exemplify the versatility of tensor network methods for studying dynamical excitations of interacting parafermion chains, and highlight the robustness of topological modes in parafermion models.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVRESEARCH.3.013095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Topological excitations in many-body systems are one of the paradigmatic cornerstones of modern condensed matter physics. In particular, parafermions are elusive fractional excitations potentially emerging in fractional quantum Hall-superconductor junctions, and represent one of the major milestones in fractional quantum matter. Here, by using a combination of tensor network and kernel polynomial techniques, we demonstrate the emergence of zero modes and finite energy excitations in many-body parafermion chains. We show the appearance of zero energy modes in the many-body spectral function at the edge of a topological parafermion chain, their relation with the topological degeneracy of the system, and we compare their physics with the Majorana bound states of topological superconductors. We demonstrate the robustness of parafermion topological modes with respect to a variety of perturbations, and we show how weakly coupled parafermion chains give rise to in-gap excitations. Our results exemplify the versatility of tensor network methods for studying dynamical excitations of interacting parafermion chains, and highlight the robustness of topological modes in parafermion models.
对偶子链中的动态拓扑激励
多体系统中的拓扑激励是现代凝聚态物理的典范基础之一。特别是,对偶粒子是难以捉摸的分数激发,可能出现在分数量子霍尔-超导体结中,代表了分数量子物质的主要里程碑之一。本文通过张量网络和核多项式技术的结合,证明了多体对偶子链中零模和有限能量激发的出现。我们展示了拓扑对偶子链边缘的多体谱函数中零能量模式的出现,它们与系统的拓扑简并的关系,并将它们的物理性质与拓扑超导体的马约拉纳束缚态进行了比较。我们证明了对偶粒子拓扑模式相对于各种扰动的鲁棒性,并且我们展示了弱耦合对偶粒子链如何引起间隙内激发。我们的研究结果证明了张量网络方法在研究相互作用的对偶子链的动力学激励方面的通用性,并突出了对偶子模型中拓扑模式的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信