Learning Interpretable Representation for 3D Point Clouds

Feng-Guang Su, Ci-Siang Lin, Y. Wang
{"title":"Learning Interpretable Representation for 3D Point Clouds","authors":"Feng-Guang Su, Ci-Siang Lin, Y. Wang","doi":"10.1109/ICPR48806.2021.9412440","DOIUrl":null,"url":null,"abstract":"Point clouds have emerged as a popular representation of 3D visual data. With a set of unordered 3D points, one typically needs to transform them into latent representation before further classification and segmentation tasks. However, one cannot easily interpret such encoded latent representation. To address this issue, we propose a unique deep learning framework for disentangling body-type and pose information from 3D point clouds. Extending from autoencoder, we advance adversarial learning a selected feature type, while classification and data recovery can be additionally observed. Our experiments confirm that our model can be successfully applied to perform a wide range of 3D applications like shape synthesis, action translation, shape/action interpolation, and synchronization.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"46 1","pages":"7470-7477"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Point clouds have emerged as a popular representation of 3D visual data. With a set of unordered 3D points, one typically needs to transform them into latent representation before further classification and segmentation tasks. However, one cannot easily interpret such encoded latent representation. To address this issue, we propose a unique deep learning framework for disentangling body-type and pose information from 3D point clouds. Extending from autoencoder, we advance adversarial learning a selected feature type, while classification and data recovery can be additionally observed. Our experiments confirm that our model can be successfully applied to perform a wide range of 3D applications like shape synthesis, action translation, shape/action interpolation, and synchronization.
学习三维点云的可解释表示
点云作为一种流行的3D视觉数据表示形式出现了。对于一组无序的三维点,在进一步的分类和分割任务之前,通常需要将它们转换为潜在表示。然而,人们不容易解释这种编码的潜在表征。为了解决这个问题,我们提出了一个独特的深度学习框架,用于从3D点云中分离出身体类型和姿态信息。从自编码器扩展,我们推进了对抗性学习选择的特征类型,而分类和数据恢复可以额外观察。我们的实验证实,我们的模型可以成功地应用于执行广泛的3D应用,如形状合成,动作转换,形状/动作插值和同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信