Minimizing risk on a fleet mix problem with a multiobjective evolutionary algorithm

M. Mazurek, S. Wesolkowski
{"title":"Minimizing risk on a fleet mix problem with a multiobjective evolutionary algorithm","authors":"M. Mazurek, S. Wesolkowski","doi":"10.1109/CISDA.2009.5356525","DOIUrl":null,"url":null,"abstract":"We apply the non-dominated sorting genetic algorithm-II (NSGA-II) to perform a multiobjective optimization of the Stochastic Fleet Estimation (SaFE) model. SaFE is a Monte Carlo-based model which generates a vehicle fleet based on the set of requirements that the fleet is supposed to accomplish. We search for Pareto-optimal combinations of valid platform-assignments for a list of tasks, which can be applied to complete scenarios output by SaFE. Solutions are evaluated on three objectives, with the goal of minimizing fleet cost, total task duration time, and the risk that a solution will not be able to accomplish possible future scenarios.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"454 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We apply the non-dominated sorting genetic algorithm-II (NSGA-II) to perform a multiobjective optimization of the Stochastic Fleet Estimation (SaFE) model. SaFE is a Monte Carlo-based model which generates a vehicle fleet based on the set of requirements that the fleet is supposed to accomplish. We search for Pareto-optimal combinations of valid platform-assignments for a list of tasks, which can be applied to complete scenarios output by SaFE. Solutions are evaluated on three objectives, with the goal of minimizing fleet cost, total task duration time, and the risk that a solution will not be able to accomplish possible future scenarios.
基于多目标进化算法的机群混合问题风险最小化
我们应用非支配排序遗传算法- ii (NSGA-II)对随机舰队估计(SaFE)模型进行多目标优化。SaFE是一个基于蒙特卡罗的模型,它根据车队应该完成的要求集生成车队。我们为一组任务搜索有效平台分配的帕累托最优组合,这些任务可以应用于由SaFE输出的完整场景。解决方案根据三个目标进行评估,目标是最小化车队成本、总任务持续时间和解决方案无法完成未来可能场景的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信