Laser control of the singlet-pairing process in an ultracold spinor mixture

J. Jie, Yonghong Yu, Dajun Wang, Peng Zhang
{"title":"Laser control of the singlet-pairing process in an ultracold spinor mixture","authors":"J. Jie, Yonghong Yu, Dajun Wang, Peng Zhang","doi":"10.1103/PhysRevA.103.053321","DOIUrl":null,"url":null,"abstract":"In the mixture of ultracold spin-1 atoms of two different species A and B (e.g., $^{23}$Na (A) and $^{87}$Rb (B)), inter-species singlet-pairing process ${\\rm A}_{+1}+{\\rm B}_{-1}\\rightleftharpoons {\\rm A}_{-1}+{\\rm B}_{+1}$, can be induced by the spin-dependent inter-atomic interaction, where subscript $\\pm 1$ denotes the magnetic quantum number. Nevertheless, one cannot isolate this process from other spin-changing processes by tuning the bias real magnetic field. As a result, so far the singlet-pairing process have not been clearly observed in the experiments, and the measurement of the corresponding interaction strength becomes difficult. In this work we propose to control the singlet-pairing process via combining the real magnetic field and a laser-induced species-dependent synthetic magnetic field. With our approach one can significantly enhance this process and simultaneously supperess all other spin-changing processes. We illustrate our approach for both a confined two-atom system and a binary mixture of spinor Bose-Einstein condensates. Our control scheme is helpful for the precise measurement of the weakly singlet-pairing interaction strength and the entanglement generation of two different atoms.","PeriodicalId":8838,"journal":{"name":"arXiv: Quantum Gases","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevA.103.053321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the mixture of ultracold spin-1 atoms of two different species A and B (e.g., $^{23}$Na (A) and $^{87}$Rb (B)), inter-species singlet-pairing process ${\rm A}_{+1}+{\rm B}_{-1}\rightleftharpoons {\rm A}_{-1}+{\rm B}_{+1}$, can be induced by the spin-dependent inter-atomic interaction, where subscript $\pm 1$ denotes the magnetic quantum number. Nevertheless, one cannot isolate this process from other spin-changing processes by tuning the bias real magnetic field. As a result, so far the singlet-pairing process have not been clearly observed in the experiments, and the measurement of the corresponding interaction strength becomes difficult. In this work we propose to control the singlet-pairing process via combining the real magnetic field and a laser-induced species-dependent synthetic magnetic field. With our approach one can significantly enhance this process and simultaneously supperess all other spin-changing processes. We illustrate our approach for both a confined two-atom system and a binary mixture of spinor Bose-Einstein condensates. Our control scheme is helpful for the precise measurement of the weakly singlet-pairing interaction strength and the entanglement generation of two different atoms.
超冷旋量混合物中单线态配对过程的激光控制
在两种不同物质A和B的超冷自旋-1原子的混合物中(例如$^{23}$Na (A)和$^{87}$Rb (B)),可以通过自旋依赖的原子间相互作用诱导出种间单重偶对过程${\rm A}_{+1}+{\rm B}_{-1}\左右键{\rm A}_{-1}+{\rm B}_{+1}$,其中下标$\pm 1$表示磁量子数。然而,人们不能通过调整偏置实磁场将这一过程与其他自旋改变过程隔离开来。因此,到目前为止,在实验中还没有清楚地观察到单线态配对过程,并且相应的相互作用强度的测量变得困难。在这项工作中,我们提出通过结合真实磁场和激光诱导的物种依赖的合成磁场来控制单线态配对过程。利用我们的方法,可以显著增强这一过程,同时抑制所有其他自旋改变过程。我们说明了我们的方法,既限制两原子系统和二元混合物的旋量玻色-爱因斯坦凝聚。我们的控制方案有助于精确测量弱单重态对相互作用强度和两个不同原子的纠缠产生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信