Octonionic Planes and Real Forms of $G_2$, $F_4$ and $E_6$

Q4 Mathematics
Daniele Corradetti, A. Marrani, David Chester, Raymond Aschheim
{"title":"Octonionic Planes and Real Forms of $G_2$, $F_4$ and $E_6$","authors":"Daniele Corradetti, A. Marrani, David Chester, Raymond Aschheim","doi":"10.7546/giq-23-2022-39-57","DOIUrl":null,"url":null,"abstract":"In this work we present a useful way to introduce the octonionic projective and hyperbolic plane $\\mathbb{O}P^{2}$ through the use of Veronese vectors. Then we focus on their relation with the exceptional Jordan algebra $\\mathfrak{J}_{3}^{\\mathbb{O}}$ and show that the Veronese vectors are the rank-one elements of the algebra. We then study groups of motions over the octonionic plane recovering all real forms of $\\text{G}_{2}$, $\\text{F}_{4}$ and $\\text{E}_{6}$ groups and finally give a classification of all octonionic and split-octonionic planes as symmetric spaces.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-23-2022-39-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 7

Abstract

In this work we present a useful way to introduce the octonionic projective and hyperbolic plane $\mathbb{O}P^{2}$ through the use of Veronese vectors. Then we focus on their relation with the exceptional Jordan algebra $\mathfrak{J}_{3}^{\mathbb{O}}$ and show that the Veronese vectors are the rank-one elements of the algebra. We then study groups of motions over the octonionic plane recovering all real forms of $\text{G}_{2}$, $\text{F}_{4}$ and $\text{E}_{6}$ groups and finally give a classification of all octonionic and split-octonionic planes as symmetric spaces.
$G_2$, $F_4$和$E_6$的八元平面和实形式
本文提出了一种利用维罗内塞向量引入八元射影和双曲平面$\mathbb{O}P^{2}$的有效方法。然后重点讨论了它们与例外约当代数$\mathfrak{J}_{3}^{\mathbb{O}}$的关系,并证明了Veronese向量是该代数的秩一元素。然后,我们研究了在八元平面上的运动群,恢复了$\text{G}_{2}$、$\text{F}_{4}$和$\text{E}_{6}$群的所有实形式,最后给出了所有八元平面和分裂八元平面作为对称空间的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信