Effective construction of covers of canonical Hom-diagrams for equations over torsion-free hyperbolic groups

IF 0.1 Q4 MATHEMATICS
O. Kharlampovich, A. Myasnikov, Alexander Taam
{"title":"Effective construction of covers of canonical Hom-diagrams for equations over torsion-free hyperbolic groups","authors":"O. Kharlampovich, A. Myasnikov, Alexander Taam","doi":"10.1515/gcc-2019-2010","DOIUrl":null,"url":null,"abstract":"Abstract We show that, given a finitely generated group G as the coordinate group of a finite system of equations over a torsion-free hyperbolic group Γ, there is an algorithm which constructs a cover of a canonical solution diagram. The diagram encodes all homomorphisms from G to Γ as compositions of factorizations through Γ-NTQ groups and canonical automorphisms of the corresponding NTQ-subgroups. We also give another characterization of Γ-limit groups as iterated generalized doubles over Γ.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"32 1","pages":"83 - 101"},"PeriodicalIF":0.1000,"publicationDate":"2019-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2019-2010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We show that, given a finitely generated group G as the coordinate group of a finite system of equations over a torsion-free hyperbolic group Γ, there is an algorithm which constructs a cover of a canonical solution diagram. The diagram encodes all homomorphisms from G to Γ as compositions of factorizations through Γ-NTQ groups and canonical automorphisms of the corresponding NTQ-subgroups. We also give another characterization of Γ-limit groups as iterated generalized doubles over Γ.
无扭双曲群上方程正则homs图盖的有效构造
摘要在无扭双曲群Γ上,给定有限生成群G作为有限方程组的坐标群,证明了存在构造正则解图覆盖的算法。该图将从G到Γ的所有同态编码为通过Γ-NTQ群和相应ntq子群的正则自同态的因数分解的组合。我们还给出了Γ-limit群在Γ上作为迭代广义双精度的另一个表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信