Cycles in Mallows random permutations

Pub Date : 2022-01-27 DOI:10.1002/rsa.21169
Jimmy He, Tobias Müller, T. Verstraaten
{"title":"Cycles in Mallows random permutations","authors":"Jimmy He, Tobias Müller, T. Verstraaten","doi":"10.1002/rsa.21169","DOIUrl":null,"url":null,"abstract":"We study cycle counts in permutations of 1,…,n$$ 1,\\dots, n $$ drawn at random according to the Mallows distribution. Under this distribution, each permutation π∈Sn$$ \\pi \\in {S}_n $$ is selected with probability proportional to qinv(π)$$ {q}^{\\mathrm{inv}\\left(\\pi \\right)} $$ , where q>0$$ q>0 $$ is a parameter and inv(π)$$ \\mathrm{inv}\\left(\\pi \\right) $$ denotes the number of inversions of π$$ \\pi $$ . For ℓ$$ \\ell $$ fixed, we study the vector (C1(Πn),…,Cℓ(Πn))$$ \\left({C}_1\\left({\\Pi}_n\\right),\\dots, {C}_{\\ell}\\left({\\Pi}_n\\right)\\right) $$ where Ci(π)$$ {C}_i\\left(\\pi \\right) $$ denotes the number of cycles of length i$$ i $$ in π$$ \\pi $$ and Πn$$ {\\Pi}_n $$ is sampled according to the Mallows distribution. When q=1$$ q=1 $$ the Mallows distribution simply samples a permutation of 1,…,n$$ 1,\\dots, n $$ uniformly at random. A classical result going back to Kolchin and Goncharoff states that in this case, the vector of cycle counts tends in distribution to a vector of independent Poisson random variables, with means 1,12,13,…,1ℓ$$ 1,\\frac{1}{2},\\frac{1}{3},\\dots, \\frac{1}{\\ell } $$ . Here we show that if 01$$ q>1 $$ there is a striking difference between the behavior of the even and the odd cycles. The even cycle counts still have linear means, and when properly rescaled tend to a multivariate Gaussian distribution. For the odd cycle counts on the other hand, the limiting behavior depends on the parity of n$$ n $$ when q>1$$ q>1 $$ . Both (C1(Π2n),C3(Π2n),…)$$ \\left({C}_1\\left({\\Pi}_{2n}\\right),{C}_3\\left({\\Pi}_{2n}\\right),\\dots \\right) $$ and (C1(Π2n+1),C3(Π2n+1),…)$$ \\left({C}_1\\left({\\Pi}_{2n+1}\\right),{C}_3\\left({\\Pi}_{2n+1}\\right),\\dots \\right) $$ have discrete limiting distributions—they do not need to be renormalized—but the two limiting distributions are distinct for all q>1$$ q>1 $$ . We describe these limiting distributions in terms of Gnedin and Olshanski's bi‐infinite extension of the Mallows model. We investigate these limiting distributions further, and study the behavior of the constants involved in the Gaussian limit laws. We for example show that as q↓1$$ q\\downarrow 1 $$ the expected number of 1‐cycles tends to 1/2$$ 1/2 $$ —which, curiously, differs from the value corresponding to q=1$$ q=1 $$ . In addition we exhibit an interesting “oscillating” behavior in the limiting probability measures for q>1$$ q>1 $$ and n$$ n $$ odd versus n$$ n $$ even.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study cycle counts in permutations of 1,…,n$$ 1,\dots, n $$ drawn at random according to the Mallows distribution. Under this distribution, each permutation π∈Sn$$ \pi \in {S}_n $$ is selected with probability proportional to qinv(π)$$ {q}^{\mathrm{inv}\left(\pi \right)} $$ , where q>0$$ q>0 $$ is a parameter and inv(π)$$ \mathrm{inv}\left(\pi \right) $$ denotes the number of inversions of π$$ \pi $$ . For ℓ$$ \ell $$ fixed, we study the vector (C1(Πn),…,Cℓ(Πn))$$ \left({C}_1\left({\Pi}_n\right),\dots, {C}_{\ell}\left({\Pi}_n\right)\right) $$ where Ci(π)$$ {C}_i\left(\pi \right) $$ denotes the number of cycles of length i$$ i $$ in π$$ \pi $$ and Πn$$ {\Pi}_n $$ is sampled according to the Mallows distribution. When q=1$$ q=1 $$ the Mallows distribution simply samples a permutation of 1,…,n$$ 1,\dots, n $$ uniformly at random. A classical result going back to Kolchin and Goncharoff states that in this case, the vector of cycle counts tends in distribution to a vector of independent Poisson random variables, with means 1,12,13,…,1ℓ$$ 1,\frac{1}{2},\frac{1}{3},\dots, \frac{1}{\ell } $$ . Here we show that if 01$$ q>1 $$ there is a striking difference between the behavior of the even and the odd cycles. The even cycle counts still have linear means, and when properly rescaled tend to a multivariate Gaussian distribution. For the odd cycle counts on the other hand, the limiting behavior depends on the parity of n$$ n $$ when q>1$$ q>1 $$ . Both (C1(Π2n),C3(Π2n),…)$$ \left({C}_1\left({\Pi}_{2n}\right),{C}_3\left({\Pi}_{2n}\right),\dots \right) $$ and (C1(Π2n+1),C3(Π2n+1),…)$$ \left({C}_1\left({\Pi}_{2n+1}\right),{C}_3\left({\Pi}_{2n+1}\right),\dots \right) $$ have discrete limiting distributions—they do not need to be renormalized—but the two limiting distributions are distinct for all q>1$$ q>1 $$ . We describe these limiting distributions in terms of Gnedin and Olshanski's bi‐infinite extension of the Mallows model. We investigate these limiting distributions further, and study the behavior of the constants involved in the Gaussian limit laws. We for example show that as q↓1$$ q\downarrow 1 $$ the expected number of 1‐cycles tends to 1/2$$ 1/2 $$ —which, curiously, differs from the value corresponding to q=1$$ q=1 $$ . In addition we exhibit an interesting “oscillating” behavior in the limiting probability measures for q>1$$ q>1 $$ and n$$ n $$ odd versus n$$ n $$ even.
分享
查看原文
循环允许随机排列
我们研究1,…,n的排列中的循环计数$$ 1,\dots, n $$ 根据Mallows分布随机抽取。在此分布下,每个排列π∈Sn$$ \pi \in {S}_n $$ 的选择概率与qinv(π)成正比$$ {q}^{\mathrm{inv}\left(\pi \right)} $$ ,其中q>0$$ q>0 $$ 是参数,inv(π)$$ \mathrm{inv}\left(\pi \right) $$ 表示π的反转数$$ \pi $$ . 对于l$$ \ell $$ 固定,我们研究向量(C1(Πn),…,C (Πn))$$ \left({C}_1\left({\Pi}_n\right),\dots, {C}_{\ell}\left({\Pi}_n\right)\right) $$ 其中Ci(π)$$ {C}_i\left(\pi \right) $$ 表示长度为I的循环数$$ i $$ 在π中$$ \pi $$ 还有Πn$$ {\Pi}_n $$ 根据Mallows分布进行抽样。当q=1时$$ q=1 $$ Mallows分布只是对1,…,n的排列进行抽样$$ 1,\dots, n $$ 均匀随机。一个可以追溯到Kolchin和Goncharoff的经典结果表明,在这种情况下,循环计数的向量在分布上趋向于一个独立泊松随机变量的向量,其平均值为1,12,13,…,1$$ 1,\frac{1}{2},\frac{1}{3},\dots, \frac{1}{\ell } $$ . 这里我们显示,如果01$$ q>1 $$ 偶循环和奇循环的行为有显著的不同。偶循环计数仍然具有线性平均值,并且当适当地重新缩放时倾向于多元高斯分布。另一方面,对于奇环计数,其极限行为取决于n的奇偶性$$ n $$ 当q>1时$$ q>1 $$ . 两者(C1(Π2n),C3(Π2n),…)$$ \left({C}_1\left({\Pi}_{2n}\right),{C}_3\left({\Pi}_{2n}\right),\dots \right) $$ 和(C1(Π2n+1),C3(Π2n+1),…)$$ \left({C}_1\left({\Pi}_{2n+1}\right),{C}_3\left({\Pi}_{2n+1}\right),\dots \right) $$ 是否有离散的极限分布-它们不需要重新规范化-但对于所有q>1,这两个极限分布是不同的$$ q>1 $$ . 我们用Gnedin和Olshanski对Mallows模型的双无限扩展来描述这些极限分布。我们进一步研究了这些极限分布,并研究了高斯极限定律中涉及的常数的行为。例如,我们把它表示为q↓1$$ q\downarrow 1 $$ 1‐周期的预期次数趋于1/2$$ 1/2 $$ -奇怪的是,它与q=1对应的值不同$$ q=1 $$ . 此外,我们在q>1的极限概率测度中展示了一个有趣的“振荡”行为$$ q>1 $$ n$$ n $$ 奇数对n$$ n $$ 甚至。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信