Madan Parajuli, G. Sobreviela, Hemin Zhang, A. Seshia
{"title":"A Silicon MEMS Disk Resonator Oscillator Demonstrating 36 ppt Frequency Stability","authors":"Madan Parajuli, G. Sobreviela, Hemin Zhang, A. Seshia","doi":"10.1109/Transducers50396.2021.9495722","DOIUrl":null,"url":null,"abstract":"This paper reports experimental results demonstrating excellent short-term frequency stability of 45.6 µLHz (36 ppt@0.4 s integration time) for a bulk acoustic wave (BAW) silicon disk resonator oscillator. The n=4 radial mode of a BAW disk resonator demonstrates an extremely high-quality factor of 1.8*106 at 1.25 MHz. The disk is designed with anchors aligned with nodal locations to minimize anchor damping. The results on the measured short-term frequency stability reported here benchmark favourably relative to the state-of-the-art.","PeriodicalId":6814,"journal":{"name":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","volume":"129 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Transducers50396.2021.9495722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper reports experimental results demonstrating excellent short-term frequency stability of 45.6 µLHz (36 ppt@0.4 s integration time) for a bulk acoustic wave (BAW) silicon disk resonator oscillator. The n=4 radial mode of a BAW disk resonator demonstrates an extremely high-quality factor of 1.8*106 at 1.25 MHz. The disk is designed with anchors aligned with nodal locations to minimize anchor damping. The results on the measured short-term frequency stability reported here benchmark favourably relative to the state-of-the-art.