Model predictive tracking control using a state-dependent gain-scheduled feedback

N. Wada, H. Tomosugi, M. Saeki, M. Nishimura
{"title":"Model predictive tracking control using a state-dependent gain-scheduled feedback","authors":"N. Wada, H. Tomosugi, M. Saeki, M. Nishimura","doi":"10.1299/JSDD.4.590","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method of synthesizing a model predictive control (MPC) law for linear dynamical systems with input constraints. The proposed control law is composed of a finite horizon open-loop optimal control law and state-dependent gain-scheduled feedback control law. By using the proposed MPC, both high control performance and large region of attraction can be achieved. We show that, by using the control law, the closed-loop stability can be guaranteed and the tracking error converges to zero in the case where a reference signal to be tracked is generated by a certain linear dynamics. The control algorithm is reduced to a convex optimization problem.","PeriodicalId":20452,"journal":{"name":"Proceedings of the 2010 International Conference on Modelling, Identification and Control","volume":"2016 1","pages":"418-423"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2010 International Conference on Modelling, Identification and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSDD.4.590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a method of synthesizing a model predictive control (MPC) law for linear dynamical systems with input constraints. The proposed control law is composed of a finite horizon open-loop optimal control law and state-dependent gain-scheduled feedback control law. By using the proposed MPC, both high control performance and large region of attraction can be achieved. We show that, by using the control law, the closed-loop stability can be guaranteed and the tracking error converges to zero in the case where a reference signal to be tracked is generated by a certain linear dynamics. The control algorithm is reduced to a convex optimization problem.
利用状态相关的增益计划反馈对预测跟踪控制进行建模
本文提出了一种具有输入约束的线性动力系统模型预测控制律的综合方法。该控制律由有限视界开环最优控制律和状态相关增益调度反馈控制律组成。采用该方法既可以实现高的控制性能,又可以实现大的吸引区域。研究表明,当待跟踪参考信号由一定的线性动力学产生时,利用该控制律可以保证闭环的稳定性,并且跟踪误差收敛于零。将控制算法简化为一个凸优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信