Linear Relationship between Temperature and the Apparent Reaction Rate Constant of Hydroxyl Radical with 4-chlorobenzoic Acid

IF 2.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Kohei Kawaguchi, Taira Hidaka, Fumitake Nishimura
{"title":"Linear Relationship between Temperature and the Apparent Reaction Rate Constant of Hydroxyl Radical with 4-chlorobenzoic Acid","authors":"Kohei Kawaguchi, Taira Hidaka, Fumitake Nishimura","doi":"10.1080/01919512.2021.2006561","DOIUrl":null,"url":null,"abstract":"ABSTRACT 4-Chlorobenzoic acid (p-CBA) is frequently used as a hydroxyl radical (HO·) probe substance in studies of ozonation and advanced oxidation processes. However, the temperature dependence of the reaction between HO· and p-CBA remains unclear. In this context, we identified the relationship between temperature ( , K) and the apparent second-order reaction rate constant of HO· with p- CBA ( , M−1 s−1): . They were measured by a novel competitive method using 2-methylpropan-2-ol (tert-butyl alcohol) as a reference substance in the range of 1.0–40.0℃. The linear regression equation was more appropriate than the exponential regression equation to express this relationship. More generally, our simulation shows that the linear regression equation can be more accurate than the exponential regression equation to express the relationship between temperature and apparent reaction rate constants of HO.","PeriodicalId":19580,"journal":{"name":"Ozone: Science & Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ozone: Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.2006561","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT 4-Chlorobenzoic acid (p-CBA) is frequently used as a hydroxyl radical (HO·) probe substance in studies of ozonation and advanced oxidation processes. However, the temperature dependence of the reaction between HO· and p-CBA remains unclear. In this context, we identified the relationship between temperature ( , K) and the apparent second-order reaction rate constant of HO· with p- CBA ( , M−1 s−1): . They were measured by a novel competitive method using 2-methylpropan-2-ol (tert-butyl alcohol) as a reference substance in the range of 1.0–40.0℃. The linear regression equation was more appropriate than the exponential regression equation to express this relationship. More generally, our simulation shows that the linear regression equation can be more accurate than the exponential regression equation to express the relationship between temperature and apparent reaction rate constants of HO.
温度与羟基自由基与4-氯苯甲酸反应表观速率常数的线性关系
摘要4-氯苯甲酸(p-CBA)是臭氧化和高级氧化过程中常用的羟基自由基(HO·)探测物质。然而,HO·与p-CBA反应的温度依赖性尚不清楚。在这种情况下,我们确定了温度(,K)与HO·与p- CBA (, M−1 s−1)的表观二级反应速率常数之间的关系:在1.0 ~ 40.0℃范围内,以2-甲基丙烷-2-醇(叔丁醇)为参比物,采用一种新的竞争性方法测定。线性回归方程比指数回归方程更适合表达这种关系。更一般地说,我们的模拟表明,线性回归方程比指数回归方程更准确地表达温度与HO表观反应速率常数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ozone: Science & Engineering
Ozone: Science & Engineering 环境科学-工程:环境
CiteScore
5.90
自引率
11.10%
发文量
40
审稿时长
2 months
期刊介绍: The only journal in the world that focuses on the technologies of ozone and related oxidation technologies, Ozone: Science and Engineering brings you quality original research, review papers, research notes, and case histories in each issue. Get the most up-to date results of basic, applied, and engineered research including: -Ozone generation and contacting- Treatment of drinking water- Analysis of ozone in gases and liquids- Treatment of wastewater and hazardous waste- Advanced oxidation processes- Treatment of emerging contaminants- Agri-Food applications- Process control of ozone systems- New applications for ozone (e.g. laundry applications, semiconductor applications)- Chemical synthesis. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信