Inapproximability of Truthful Mechanisms via Generalizations of the VC Dimension

Amit Daniely, Michael Schapira, Gal Shahaf
{"title":"Inapproximability of Truthful Mechanisms via Generalizations of the VC Dimension","authors":"Amit Daniely, Michael Schapira, Gal Shahaf","doi":"10.1145/2746539.2746597","DOIUrl":null,"url":null,"abstract":"Algorithmic mechanism design (AMD) studies the delicate interplay between computational efficiency, truthfulness, and optimality. We focus on AMD's paradigmatic problem: combinatorial auctions. We present a new generalization of the VC dimension to multivalued collections of functions, which encompasses the classical VC dimension, Natarajan dimension, and Steele dimension. We present a corresponding generalization of the Sauer-Shelah Lemma and harness this VC machinery to establish inapproximability results for deterministic truthful mechanisms. Our results essentially unify all inapproximability results for deterministic truthful mechanisms for combinatorial auctions to date and establish new separation gaps between truthful and non-truthful algorithms.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Algorithmic mechanism design (AMD) studies the delicate interplay between computational efficiency, truthfulness, and optimality. We focus on AMD's paradigmatic problem: combinatorial auctions. We present a new generalization of the VC dimension to multivalued collections of functions, which encompasses the classical VC dimension, Natarajan dimension, and Steele dimension. We present a corresponding generalization of the Sauer-Shelah Lemma and harness this VC machinery to establish inapproximability results for deterministic truthful mechanisms. Our results essentially unify all inapproximability results for deterministic truthful mechanisms for combinatorial auctions to date and establish new separation gaps between truthful and non-truthful algorithms.
VC维推广下真实机制的不可逼近性
算法机制设计(AMD)研究计算效率、真实性和最优性之间微妙的相互作用。我们关注的是AMD的典型问题:组合拍卖。将VC维推广到函数的多值集合,包括经典的VC维、Natarajan维和Steele维。我们提出了相应的Sauer-Shelah引理的推广,并利用该VC机制建立了确定性真实机制的不近似结果。我们的结果基本上统一了迄今为止组合拍卖的确定性真实机制的所有不可近似性结果,并在真实和非真实算法之间建立了新的分离差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信