Associate spaces of logarithmic interpolation spaces and generalized Lorentz–Zygmund spaces

IF 0.9 4区 数学 Q2 Mathematics
Blanca F. Besoy, F. Cobos, L. M. Fernández-Cabrera
{"title":"Associate spaces of logarithmic interpolation spaces and generalized Lorentz–Zygmund spaces","authors":"Blanca F. Besoy, F. Cobos, L. M. Fernández-Cabrera","doi":"10.5186/AASFM.2020.4525","DOIUrl":null,"url":null,"abstract":"We determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2020.4525","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

We determine the associate space of the logarithmic interpolation space (X0, X1)1,q,A where X0 and X1 are Banach function spaces over a σ-finite measure space (Ω, µ). Particularizing the results for the case of the couple (L1, L∞) over a non-atomic measure space, we recover results of Opic and Pick on associate spaces of generalized Lorentz-Zygmund spaces L(∞,q;A). We also establish the corresponding results for sequence spaces.
对数插值空间与广义Lorentz-Zygmund空间的关联空间
我们确定了对数插值空间(X0, X1)1,q,A的关联空间,其中X0和X1是σ-有限测度空间(Ω,µ)上的Banach函数空间。将非原子测度空间上的偶(L1, L∞)的结果具体化,我们在广义Lorentz-Zygmund空间L(∞,q; a)的关联空间上恢复了Opic和Pick的结果。对序列空间也建立了相应的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信