Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space

Pub Date : 2018-01-01 DOI:10.5565/PUBLMAT6211805
J. F. Silva, H. F. Lima, M. Velásquez
{"title":"Stability of generalized linear Weingarten hypersurfaces immersed in the Euclidean space","authors":"J. F. Silva, H. F. Lima, M. Velásquez","doi":"10.5565/PUBLMAT6211805","DOIUrl":null,"url":null,"abstract":"Given a positive function F defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces Mn immersed in the Euclidean space Rn+1, the so-called k-th anisotropic mean curvatures HF k, 0 ≤ k ≤ n. For fixed 0 ≤ r ≤ s ≤ n, a hypersurface Mn of Rn+1 is said to be (r, s, F)-linear Weingarten when its k-th anisotropic mean curvatures HF k, r ≤ k ≤ s, are linearly related. In this setting, we establish the concept of stability concerning closed (r, s, F)-linear Weingarten hypersurfaces  immersed in Rn+1 and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of F. For r = s and F ≡ 1, our results amount to the standard stability studied, for instance, by Alencar–do Carmo–Rosenberg.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6211805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a positive function F defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces Mn immersed in the Euclidean space Rn+1, the so-called k-th anisotropic mean curvatures HF k, 0 ≤ k ≤ n. For fixed 0 ≤ r ≤ s ≤ n, a hypersurface Mn of Rn+1 is said to be (r, s, F)-linear Weingarten when its k-th anisotropic mean curvatures HF k, r ≤ k ≤ s, are linearly related. In this setting, we establish the concept of stability concerning closed (r, s, F)-linear Weingarten hypersurfaces  immersed in Rn+1 and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of F. For r = s and F ≡ 1, our results amount to the standard stability studied, for instance, by Alencar–do Carmo–Rosenberg.
分享
查看原文
广义线性Weingarten超曲面在欧氏空间中的稳定性
给定一个定义在单位欧几里德球上且满足适当凸性条件的正函数F,我们考虑对于浸没在欧几里德空间Rn+1中的超曲面Mn,具有所谓的第k个各向异性平均曲率HF k, 0≤k≤n。对于固定的0≤r≤s≤n,当Rn+1的超曲面Mn的第k个各向异性平均曲率HF k, r≤k≤s线性相关时,称其为(r, s, F)-线性Weingarten。在这种情况下,我们建立了关于浸入Rn+1中的封闭(r, s, F)-线性Weingarten超曲面的稳定性概念,然后,我们证明了这样的超曲面是稳定的,当且仅当,就平移和同理而言,它是F的Wulff形状。对于r = s和F≡1,我们的结果相当于标准稳定性研究,例如,由Alencar-do Carmo-Rosenberg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信