{"title":"Image based Static Facial Expression Recognition with Multiple Deep Network Learning","authors":"Zhiding Yu, Cha Zhang","doi":"10.1145/2818346.2830595","DOIUrl":null,"url":null,"abstract":"We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.","PeriodicalId":20486,"journal":{"name":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"537","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM on International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818346.2830595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 537
Abstract
We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.