Chaotic Time Series Prediction Based On Binary Particle Swarm Optimization

Xiaoxiao Cui, Mingyan Jiang
{"title":"Chaotic Time Series Prediction Based On Binary Particle Swarm Optimization","authors":"Xiaoxiao Cui,&nbsp;Mingyan Jiang","doi":"10.1016/j.aasri.2012.06.058","DOIUrl":null,"url":null,"abstract":"<div><p>Prediction of chaotic time series based on the phase space reconstruction theory has been applied in many research fields. Local linear model is widely used in chaos prediction due to its versatility and small computation amount. The embedding dimension and time delay parameters of the local linear prediction model can take different values with those of the phase space reconstruction. The Binary Particle Swarm Optimization (BPSO) is applied to choose the optimal parameters of the new local linear prediction model for its strong search ability. The main objective of this approach is to increase the predictive accuracy of the local linear model. In this paper the local linear one-step and multi-step predictive model predicts the chaotic time series respectively. Simulation results show the feasibility and effectiveness of the proposed method.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"1 ","pages":"Pages 377-383"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2012.06.058","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671612000595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Prediction of chaotic time series based on the phase space reconstruction theory has been applied in many research fields. Local linear model is widely used in chaos prediction due to its versatility and small computation amount. The embedding dimension and time delay parameters of the local linear prediction model can take different values with those of the phase space reconstruction. The Binary Particle Swarm Optimization (BPSO) is applied to choose the optimal parameters of the new local linear prediction model for its strong search ability. The main objective of this approach is to increase the predictive accuracy of the local linear model. In this paper the local linear one-step and multi-step predictive model predicts the chaotic time series respectively. Simulation results show the feasibility and effectiveness of the proposed method.

基于二元粒子群优化的混沌时间序列预测
基于相空间重构理论的混沌时间序列预测已经在许多研究领域得到了应用。局部线性模型以其通用性强、计算量小等优点在混沌预测中得到广泛应用。局部线性预测模型的嵌入维数和时延参数可以与相空间重构的嵌入维数和时延参数取不同的值。利用二元粒子群优化算法(BPSO)对局部线性预测模型较强的搜索能力选择最优参数。该方法的主要目的是提高局部线性模型的预测精度。本文分别用局部线性一步预测模型和多步预测模型对混沌时间序列进行预测。仿真结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信