Agreement theorems for high dimensional expanders in the small soundness regime: the role of covers

Yotam Dikstein, Irit Dinur
{"title":"Agreement theorems for high dimensional expanders in the small soundness regime: the role of covers","authors":"Yotam Dikstein, Irit Dinur","doi":"10.48550/arXiv.2308.09582","DOIUrl":null,"url":null,"abstract":"Given a family $X$ of subsets of $[n]$ and an ensemble of local functions $\\{f_s:s\\to\\Sigma\\; | \\; s\\in X\\}$, an agreement test is a randomized property tester that is supposed to test whether there is some global function $G:[n]\\to\\Sigma$ such that $f_s=G|_s$ for many sets $s$. A\"classical\"small-soundness agreement theorem is a list-decoding $(LD)$ statement, saying that \\[\\tag{$LD$} Agree(\\{f_s\\})>\\varepsilon \\quad \\Longrightarrow \\quad \\exists G^1,\\dots, G^\\ell,\\quad P_s[f_s\\overset{0.99}{\\approx}G^i|_s]\\geq poly(\\varepsilon),\\;i=1,\\dots,\\ell. \\] Such a statement is motivated by PCP questions and has been shown in the case where $X=\\binom{[n]}k$, or where $X$ is a collection of low dimensional subspaces of a vector space. In this work we study small the case of on high dimensional expanders $X$. It has been an open challenge to analyze their small soundness behavior. Surprisingly, the small soundness behavior turns out to be governed by the topological covers of $X$.We show that: 1. If $X$ has no connected covers, then $(LD)$ holds, provided that $X$ satisfies an additional expansion property. 2. If $X$ has a connected cover, then $(LD)$ necessarily fails. 3. If $X$ has a connected cover (and assuming the additional expansion property), we replace the $(LD)$ by a weaker statement we call lift-decoding: \\[ \\tag{$LFD$} Agree(\\{f_s\\})>\\varepsilon \\Longrightarrow \\quad \\exists\\text{ cover }\\rho:Y\\twoheadrightarrow X,\\text{ and }G:Y(0)\\to\\Sigma,\\text{ such that }\\] \\[P_{{\\tilde s\\twoheadrightarrow s}}[f_s \\overset{0.99}{\\approx} G|_{\\tilde s}] \\geq poly(\\varepsilon),\\] where ${\\tilde s\\twoheadrightarrow s}$ means that $\\rho(\\tilde s)=s$. The additional expansion property is cosystolic expansion of a complex derived from $X$ holds for the spherical building and for quotients of the Bruhat-Tits building.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2308.09582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Given a family $X$ of subsets of $[n]$ and an ensemble of local functions $\{f_s:s\to\Sigma\; | \; s\in X\}$, an agreement test is a randomized property tester that is supposed to test whether there is some global function $G:[n]\to\Sigma$ such that $f_s=G|_s$ for many sets $s$. A"classical"small-soundness agreement theorem is a list-decoding $(LD)$ statement, saying that \[\tag{$LD$} Agree(\{f_s\})>\varepsilon \quad \Longrightarrow \quad \exists G^1,\dots, G^\ell,\quad P_s[f_s\overset{0.99}{\approx}G^i|_s]\geq poly(\varepsilon),\;i=1,\dots,\ell. \] Such a statement is motivated by PCP questions and has been shown in the case where $X=\binom{[n]}k$, or where $X$ is a collection of low dimensional subspaces of a vector space. In this work we study small the case of on high dimensional expanders $X$. It has been an open challenge to analyze their small soundness behavior. Surprisingly, the small soundness behavior turns out to be governed by the topological covers of $X$.We show that: 1. If $X$ has no connected covers, then $(LD)$ holds, provided that $X$ satisfies an additional expansion property. 2. If $X$ has a connected cover, then $(LD)$ necessarily fails. 3. If $X$ has a connected cover (and assuming the additional expansion property), we replace the $(LD)$ by a weaker statement we call lift-decoding: \[ \tag{$LFD$} Agree(\{f_s\})>\varepsilon \Longrightarrow \quad \exists\text{ cover }\rho:Y\twoheadrightarrow X,\text{ and }G:Y(0)\to\Sigma,\text{ such that }\] \[P_{{\tilde s\twoheadrightarrow s}}[f_s \overset{0.99}{\approx} G|_{\tilde s}] \geq poly(\varepsilon),\] where ${\tilde s\twoheadrightarrow s}$ means that $\rho(\tilde s)=s$. The additional expansion property is cosystolic expansion of a complex derived from $X$ holds for the spherical building and for quotients of the Bruhat-Tits building.
小稳健性区域中高维展开机的一致定理:盖的作用
给定一个$[n]$的子集族$X$和一个局部函数集合$\{f_s:s\to\Sigma\; | \; s\in X\}$,一致性测试是一个随机属性测试器,用来测试是否存在一些全局函数$G:[n]\to\Sigma$,使得$f_s=G|_s$对于许多集合$s$。一个“经典的”小完备性一致定理是一个列表解码$(LD)$语句,它说\[\tag{$LD$} Agree(\{f_s\})>\varepsilon \quad \Longrightarrow \quad \exists G^1,\dots, G^\ell,\quad P_s[f_s\overset{0.99}{\approx}G^i|_s]\geq poly(\varepsilon),\;i=1,\dots,\ell. \]这样的语句是由PCP问题激发的,并且在$X=\binom{[n]}k$或$X$是向量空间的低维子空间集合的情况下得到了证明。在这项工作中,我们研究了小的情况下,高维膨胀$X$。分析它们的小健康行为一直是一个公开的挑战。令人惊讶的是,小稳健性行为被证明是由$X$的拓扑覆盖所控制的。如果$X$没有连接的盖,则$(LD)$成立,前提是$X$满足一个附加的展开属性。2. 如果$X$有一个连接的封面,那么$(LD)$必然失败。3.如果$X$有一个连接的覆盖(并假设有额外的扩展属性),我们用一个更弱的语句来替换$(LD)$,我们称之为提升解码:\[ \tag{$LFD$} Agree(\{f_s\})>\varepsilon \Longrightarrow \quad \exists\text{ cover }\rho:Y\twoheadrightarrow X,\text{ and }G:Y(0)\to\Sigma,\text{ such that }\]\[P_{{\tilde s\twoheadrightarrow s}}[f_s \overset{0.99}{\approx} G|_{\tilde s}] \geq poly(\varepsilon),\],其中${\tilde s\twoheadrightarrow s}$表示$\rho(\tilde s)=s$。附加的膨胀特性是由$X$衍生的综合体的收缩膨胀,适用于球形建筑和Bruhat-Tits建筑的商数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信