Atomic-orbital-free intrinsic ferromagnetism in electrenes

Jun Zhou, Y. Feng, Lei Shen
{"title":"Atomic-orbital-free intrinsic ferromagnetism in electrenes","authors":"Jun Zhou, Y. Feng, Lei Shen","doi":"10.1103/PHYSREVB.102.180407","DOIUrl":null,"url":null,"abstract":"We report intrinsic ferromagnetism in monolayer electrides or electrenes, in which excess electrons act as anions. Our first-principles calculations demonstrate that magnetism in such electron-rich two-dimensional (2D) materials originates from the anionic electrons rather than partially filled d orbitals, which is fundamentally different from ferromagnetism found in other 2D intrinsic magnetic materials. Taking the honeycomb LaBr$_2$ (La$^{3+}$Br$^{-}_{2}\\cdot e^{-}$) as an example, our calculations reveal that the excess electron is localized at the center of the hexagon, which leads to strong Stoner-instability of the associated states at the Fermi energy, resulting in spontaneous magnetization and formation of a local moment. The overlap of extended tails of the wave functions of these electrons mediates a long-range ferromagnetic interaction, contributing to a Curie temperature ($T_\\textrm{c}$) of 235 K and a coercive field ($H_\\textrm{c}$) of 0.53 T, which can be further enhanced by hole doping. The dual nature, localization and extension, of the electronic states suggests a unique mechanism in such magnetic-element-free electrenes as intrinsic 2D ferromagnets.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.180407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We report intrinsic ferromagnetism in monolayer electrides or electrenes, in which excess electrons act as anions. Our first-principles calculations demonstrate that magnetism in such electron-rich two-dimensional (2D) materials originates from the anionic electrons rather than partially filled d orbitals, which is fundamentally different from ferromagnetism found in other 2D intrinsic magnetic materials. Taking the honeycomb LaBr$_2$ (La$^{3+}$Br$^{-}_{2}\cdot e^{-}$) as an example, our calculations reveal that the excess electron is localized at the center of the hexagon, which leads to strong Stoner-instability of the associated states at the Fermi energy, resulting in spontaneous magnetization and formation of a local moment. The overlap of extended tails of the wave functions of these electrons mediates a long-range ferromagnetic interaction, contributing to a Curie temperature ($T_\textrm{c}$) of 235 K and a coercive field ($H_\textrm{c}$) of 0.53 T, which can be further enhanced by hole doping. The dual nature, localization and extension, of the electronic states suggests a unique mechanism in such magnetic-element-free electrenes as intrinsic 2D ferromagnets.
电子中无原子轨道的本征铁磁性
我们报道了单层电子或电子的本征铁磁性,其中多余的电子充当阴离子。我们的第一性原理计算表明,这种富含电子的二维(2D)材料中的磁性来自阴离子电子,而不是部分填充的d轨道,这与其他二维本征磁性材料中的铁磁性有着根本的不同。以蜂窝结构LaBr$_2$ (La$^{3+}$Br$^{-}_{2}\cdot e^{-}$)为例,我们的计算表明,多余的电子定位在六边形的中心,这导致在费米能量处的伴生态具有很强的斯托纳不稳定性,导致自发磁化和局域矩的形成。这些电子的波函数扩展尾的重叠介导了一种远程铁磁相互作用,导致居里温度($T_\textrm{c}$)为235 K,矫顽力场($H_\textrm{c}$)为0.53 T,这可以通过空穴掺杂进一步增强。电子态的双重性、局域性和外延性表明,在无磁性元素的二维铁磁体中,存在一种独特的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信