{"title":"Atomic-orbital-free intrinsic ferromagnetism in electrenes","authors":"Jun Zhou, Y. Feng, Lei Shen","doi":"10.1103/PHYSREVB.102.180407","DOIUrl":null,"url":null,"abstract":"We report intrinsic ferromagnetism in monolayer electrides or electrenes, in which excess electrons act as anions. Our first-principles calculations demonstrate that magnetism in such electron-rich two-dimensional (2D) materials originates from the anionic electrons rather than partially filled d orbitals, which is fundamentally different from ferromagnetism found in other 2D intrinsic magnetic materials. Taking the honeycomb LaBr$_2$ (La$^{3+}$Br$^{-}_{2}\\cdot e^{-}$) as an example, our calculations reveal that the excess electron is localized at the center of the hexagon, which leads to strong Stoner-instability of the associated states at the Fermi energy, resulting in spontaneous magnetization and formation of a local moment. The overlap of extended tails of the wave functions of these electrons mediates a long-range ferromagnetic interaction, contributing to a Curie temperature ($T_\\textrm{c}$) of 235 K and a coercive field ($H_\\textrm{c}$) of 0.53 T, which can be further enhanced by hole doping. The dual nature, localization and extension, of the electronic states suggests a unique mechanism in such magnetic-element-free electrenes as intrinsic 2D ferromagnets.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.102.180407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We report intrinsic ferromagnetism in monolayer electrides or electrenes, in which excess electrons act as anions. Our first-principles calculations demonstrate that magnetism in such electron-rich two-dimensional (2D) materials originates from the anionic electrons rather than partially filled d orbitals, which is fundamentally different from ferromagnetism found in other 2D intrinsic magnetic materials. Taking the honeycomb LaBr$_2$ (La$^{3+}$Br$^{-}_{2}\cdot e^{-}$) as an example, our calculations reveal that the excess electron is localized at the center of the hexagon, which leads to strong Stoner-instability of the associated states at the Fermi energy, resulting in spontaneous magnetization and formation of a local moment. The overlap of extended tails of the wave functions of these electrons mediates a long-range ferromagnetic interaction, contributing to a Curie temperature ($T_\textrm{c}$) of 235 K and a coercive field ($H_\textrm{c}$) of 0.53 T, which can be further enhanced by hole doping. The dual nature, localization and extension, of the electronic states suggests a unique mechanism in such magnetic-element-free electrenes as intrinsic 2D ferromagnets.