Estimating Touch Force with Barometric Pressure Sensors

Philip Quinn
{"title":"Estimating Touch Force with Barometric Pressure Sensors","authors":"Philip Quinn","doi":"10.1145/3290605.3300919","DOIUrl":null,"url":null,"abstract":"Finger pressure offers a new dimension for touch interaction, where input is defined by its spatial position and orthogonal force. However, the limited availability and complexity of integrated force-sensing hardware in mobile devices is a barrier to exploring this design space. This paper presents a synthesis of two features in recent mobile devices - a barometric sensor (pressure altimeter) and ingress protection - to sense a user's touch force. When a user applies force to a device's display, it flexes inward and causes an increase in atmospheric pressure within the sealed chassis. This increase in pressure can be sensed by the device's internal barometer. However, this change is uncontrolled and requires a calibration model to map atmospheric pressure to touch force. This paper derives such a model and demonstrates its viability on four commercially-available devices (including two with dedicated force sensors). The results show this method is sensitive to forces of less than 1 N, and is comparable to dedicated force sensors.","PeriodicalId":20454,"journal":{"name":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3290605.3300919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Finger pressure offers a new dimension for touch interaction, where input is defined by its spatial position and orthogonal force. However, the limited availability and complexity of integrated force-sensing hardware in mobile devices is a barrier to exploring this design space. This paper presents a synthesis of two features in recent mobile devices - a barometric sensor (pressure altimeter) and ingress protection - to sense a user's touch force. When a user applies force to a device's display, it flexes inward and causes an increase in atmospheric pressure within the sealed chassis. This increase in pressure can be sensed by the device's internal barometer. However, this change is uncontrolled and requires a calibration model to map atmospheric pressure to touch force. This paper derives such a model and demonstrates its viability on four commercially-available devices (including two with dedicated force sensors). The results show this method is sensitive to forces of less than 1 N, and is comparable to dedicated force sensors.
用气压传感器估计触摸力
手指压力为触摸交互提供了一个新的维度,其中输入由其空间位置和正交力定义。然而,移动设备中集成力感硬件的有限可用性和复杂性是探索这一设计空间的障碍。本文介绍了最近移动设备的两个功能的综合-气压传感器(压力高度计)和进入保护-来感知用户的触摸力。当用户对设备的显示屏施力时,显示屏会向内弯曲,导致密封机箱内的大气压增加。这种压力的增加可以通过设备内部的气压计来感知。然而,这种变化是不受控制的,需要一个校准模型来映射大气压力到触摸力。本文推导了这样一个模型,并在四个商用设备(包括两个专用力传感器)上证明了它的可行性。结果表明,该方法对小于1n的力敏感,可与专用力传感器相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信