R. Buoy, Nguonly Taing, Sovisal Chenda, Sokchea Kor
{"title":"Khmer printed character recognition using attention-based Seq2Seq network","authors":"R. Buoy, Nguonly Taing, Sovisal Chenda, Sokchea Kor","doi":"10.46223/hcmcoujs.tech.en.12.1.2217.2022","DOIUrl":null,"url":null,"abstract":"This paper presents an end-to-end deep convolutional recurrent neural network solution for Khmer optical character recognition (OCR) task. The proposed solution uses a sequence-to-sequence (Seq2Seq) architecture with attention mechanism. The encoder extracts visual features from an input text-line image via layers of convolutional blocks and a layer of gated recurrent units (GRU). The features are encoded in a single context vector and a sequence of hidden states which are fed to the decoder for decoding one character at a time until a special end-of-sentence (EOS) token is reached. The attention mechanism allows the decoder network to adaptively select relevant parts of the input image while predicting a target character. The Seq2Seq Khmer OCR network is trained on a large collection of computer-generated text-line images for multiple common Khmer fonts. Complex data augmentation is applied on both train and validation dataset. The proposed model’s performance outperforms the state-of-art Tesseract OCR engine for Khmer language on the validation set of 6400 augmented images by achieving a character error rate (CER) of 0.7% vs 35.9%.","PeriodicalId":34742,"journal":{"name":"Ho Chi Minh City Open University Journal of Science Engineering and Technology","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ho Chi Minh City Open University Journal of Science Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46223/hcmcoujs.tech.en.12.1.2217.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents an end-to-end deep convolutional recurrent neural network solution for Khmer optical character recognition (OCR) task. The proposed solution uses a sequence-to-sequence (Seq2Seq) architecture with attention mechanism. The encoder extracts visual features from an input text-line image via layers of convolutional blocks and a layer of gated recurrent units (GRU). The features are encoded in a single context vector and a sequence of hidden states which are fed to the decoder for decoding one character at a time until a special end-of-sentence (EOS) token is reached. The attention mechanism allows the decoder network to adaptively select relevant parts of the input image while predicting a target character. The Seq2Seq Khmer OCR network is trained on a large collection of computer-generated text-line images for multiple common Khmer fonts. Complex data augmentation is applied on both train and validation dataset. The proposed model’s performance outperforms the state-of-art Tesseract OCR engine for Khmer language on the validation set of 6400 augmented images by achieving a character error rate (CER) of 0.7% vs 35.9%.