Membrane dynamics in mammalian embryogenesis: Implication in signal regulation

Q Medicine
Yoh Wada, Ge-Hong Sun-Wada, Nobuyuki Kawamura, Jyunichiro Yasukawa
{"title":"Membrane dynamics in mammalian embryogenesis: Implication in signal regulation","authors":"Yoh Wada,&nbsp;Ge-Hong Sun-Wada,&nbsp;Nobuyuki Kawamura,&nbsp;Jyunichiro Yasukawa","doi":"10.1002/bdrc.21124","DOIUrl":null,"url":null,"abstract":"<p>Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra- and extracellular compartments. Post-translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals. Birth Defects Research (Part C) 108:33–44, 2016. © 2016 Wiley Periodicals, Inc.</p>","PeriodicalId":55352,"journal":{"name":"Birth Defects Research Part C-Embryo Today-Reviews","volume":"108 1","pages":"33-44"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/bdrc.21124","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research Part C-Embryo Today-Reviews","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdrc.21124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 6

Abstract

Eukaryotes have evolved an array of membrane compartments constituting secretory and endocytic pathways that allow the flow of materials. Both pathways perform important regulatory roles. The secretory pathway is essential for the production of extracellular, secreted signal molecules, but its function is not restricted to a mere route connecting intra- and extracellular compartments. Post-translational modifications also play an integral function in the secretory pathway and are implicated in developmental regulation. The endocytic pathway serves as a platform for relaying signals from the extracellular stimuli to intracellular mediators, and then ultimately inducing signal termination. Here, we discuss recent studies showing that dysfunction in membrane dynamics causes patterning defects in embryogenesis and tissue morphogenesis in mammals. Birth Defects Research (Part C) 108:33–44, 2016. © 2016 Wiley Periodicals, Inc.

哺乳动物胚胎发生中的膜动力学:信号调控的含义
真核生物已经进化出一系列的膜室,这些膜室构成了分泌和内吞途径,允许物质流动。这两种途径都发挥着重要的调节作用。分泌途径对于细胞外分泌信号分子的产生至关重要,但其功能并不局限于连接细胞内和细胞外隔室的单纯途径。翻译后修饰在分泌途径中也起着不可或缺的作用,并与发育调节有关。内吞通路作为一个平台,将细胞外刺激信号传递到细胞内介质,并最终诱导信号终止。在这里,我们讨论了最近的研究表明,膜动力学的功能障碍导致哺乳动物胚胎发生和组织形态发生的模式缺陷。出生缺陷研究(C辑)108:33-44,2016。©2016 Wiley期刊公司
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.65
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: John Wiley & Sons and the Teratology Society are please to announce a new journal, Birth Defects Research . This new journal is a comprehensive resource of original research and reviews in fields related to embryo-fetal development and reproduction. Birth Defects Research draws from the expertise and reputation of two current Wiley journals, and introduces a new forum for reviews in developmental biology and embryology. Part C: Embryo Today: Reviews
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信