Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds

Pub Date : 2021-12-01 DOI:10.35634/vm210407
A. Losev, V. Filatov
{"title":"Liouville type theorems for solutions of semilinear equations on non-compact Riemannian manifolds","authors":"A. Losev, V. Filatov","doi":"10.35634/vm210407","DOIUrl":null,"url":null,"abstract":"It is proved that the Liouville function associated with the semilinear equation $\\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \\Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm210407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is proved that the Liouville function associated with the semilinear equation $\Delta u -g(x,u)=0$ is identical to zero if and only if there is only a trivial bounded solution of the semilinear equation on non-compact Riemannian manifolds. This result generalizes the corresponding result of S.A. Korolkov for the case of the stationary Schrödinger equation $ \Delta u-q (x) u = 0$. The concept of the capacity of a compact set associated with the stationary Schrödinger equation is also introduced and it is proved that if the capacity of any compact set is equal to zero, then the Liouville function is identically zero.
分享
查看原文
非紧黎曼流形上半线性方程解的Liouville型定理
证明了与半线性方程$\ u -g(x,u)=0$相关的Liouville函数等于零当且仅当该半线性方程在非紧黎曼流形上只有一个平凡有界解。这个结果推广了sa Korolkov对于平稳Schrödinger方程$ \Delta u-q (x) u = 0$的相应结果。引入了与平稳Schrödinger方程相关的紧集容量的概念,并证明了如果任意紧集的容量等于零,则Liouville函数等于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信