{"title":"Meta-Modeling Based Secure Software Development Processes","authors":"Mehrez Essafi, H. Ghézala","doi":"10.4018/IJSSE.2014070104","DOIUrl":null,"url":null,"abstract":"This work suggests a multilevel support to software developers, who often lack knowledge and skills on how to proceed to develop secure software. In fact, developing software with such quality is a hard and complex task that involves many additional security-dedicated activities which are usually omitted in traditional software development lifecycles or integrated but not efficiently and appropriately deployed in some others. To federate all these software security-assurance activities in a structured way and provide the required guidelines for choosing and using them in a flexible development process, authors used meta-modeling techniques and dynamic process execution that consider developer's affinities and product's states. The proposed approach formalizes existing secure software development processes, allows integration of new ones, prevents ad-hoc executions and is supported by a tool to facilitate its deployment. A case study is given here to exemplify the proposed approach application and to illustrate some of its advantages.","PeriodicalId":89158,"journal":{"name":"International journal of secure software engineering","volume":"28 1","pages":"56-74"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of secure software engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSE.2014070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This work suggests a multilevel support to software developers, who often lack knowledge and skills on how to proceed to develop secure software. In fact, developing software with such quality is a hard and complex task that involves many additional security-dedicated activities which are usually omitted in traditional software development lifecycles or integrated but not efficiently and appropriately deployed in some others. To federate all these software security-assurance activities in a structured way and provide the required guidelines for choosing and using them in a flexible development process, authors used meta-modeling techniques and dynamic process execution that consider developer's affinities and product's states. The proposed approach formalizes existing secure software development processes, allows integration of new ones, prevents ad-hoc executions and is supported by a tool to facilitate its deployment. A case study is given here to exemplify the proposed approach application and to illustrate some of its advantages.