Graph Convolutional Networks for Predicting State-wise Pandemic Incidence in India

S. Sriraman, R. Manjunathan, Nethraa Sivakumar, S. Pooja, Nikhil Viswanath
{"title":"Graph Convolutional Networks for Predicting State-wise Pandemic Incidence in India","authors":"S. Sriraman, R. Manjunathan, Nethraa Sivakumar, S. Pooja, Nikhil Viswanath","doi":"10.1109/AISP53593.2022.9760527","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the performance of graph convolutional networks (GCNs) in predicting COVID-19 incidence in states and union territories (UTs) in India as a semisupervised learning task. By training the model with data from a small number of states whose incidence is known, we analyze the accuracy in predicting incidence levels in the remaining states and UTs in India. We explore the effect of pre-existing factors such as foreign visitor count, senior citizen population and population density of states in predicting spread. To show the robustness of this model, we introduce a novel method to choose states for training that reduces bias through random sampling in five regions that cover India’s geography. We show that GCNs, on average, produce a 9% improvement in accuracy over the best performing non-graph-based model and discuss if the results are feasible for use in a real-world scenario.","PeriodicalId":6793,"journal":{"name":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","volume":"44 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP53593.2022.9760527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we analyze the performance of graph convolutional networks (GCNs) in predicting COVID-19 incidence in states and union territories (UTs) in India as a semisupervised learning task. By training the model with data from a small number of states whose incidence is known, we analyze the accuracy in predicting incidence levels in the remaining states and UTs in India. We explore the effect of pre-existing factors such as foreign visitor count, senior citizen population and population density of states in predicting spread. To show the robustness of this model, we introduce a novel method to choose states for training that reduces bias through random sampling in five regions that cover India’s geography. We show that GCNs, on average, produce a 9% improvement in accuracy over the best performing non-graph-based model and discuss if the results are feasible for use in a real-world scenario.
用于预测印度各邦流行病发病率的卷积网络图
在本文中,我们分析了图卷积网络(GCNs)作为半监督学习任务在预测印度邦和联合领土(ut)的COVID-19发病率方面的性能。通过使用少数已知发病率的邦的数据训练模型,我们分析了预测印度其余邦和ut发病率水平的准确性。我们探讨了外国游客数量、老年人口和各州人口密度等预先存在因素对预测传播的影响。为了显示该模型的鲁棒性,我们引入了一种新的方法来选择训练状态,通过在覆盖印度地理的五个地区进行随机抽样来减少偏差。我们表明,平均而言,GCNs比性能最好的非基于图的模型的准确率提高了9%,并讨论了结果是否适用于现实场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信