Potential Impact of Learning Management Zones for Site-Specific N Fertilisation: A Case Study for Wheat Crops

Nitrogen Pub Date : 2022-06-13 DOI:10.3390/nitrogen3020025
Camilo Franco, Nicolás Mejía, S. M. Pedersen, R. Gislum
{"title":"Potential Impact of Learning Management Zones for Site-Specific N Fertilisation: A Case Study for Wheat Crops","authors":"Camilo Franco, Nicolás Mejía, S. M. Pedersen, R. Gislum","doi":"10.3390/nitrogen3020025","DOIUrl":null,"url":null,"abstract":"This paper proposes an automatic, machine learning methodology for precision agriculture, aiming at learning management zones that allow a more efficient and sustainable use of fertiliser. In particular, the methodology consists of clustering remote sensing data and estimating the impact of decision-making based on the extracted knowledge. A case study is developed on experimental data coming from winter wheat (Triticum aestivum) crops receiving site-specific fertilisation. A first approximation to the data allows measuring the effects of the fertilisation treatments on the yield and quality of the crops. After verifying the significance of such effects, clustering analysis is applied on sensor readings on vegetation and soil electric conductivity in order to automatically learn the best configuration of zones for differentiated treatment. The complete methodology for identifying management zones from vegetation and soil sensing is validated for two experimental sites in Denmark, estimating its potential impact for decision-making on site-specific N fertilisation.","PeriodicalId":19365,"journal":{"name":"Nitrogen","volume":"2002 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nitrogen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/nitrogen3020025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an automatic, machine learning methodology for precision agriculture, aiming at learning management zones that allow a more efficient and sustainable use of fertiliser. In particular, the methodology consists of clustering remote sensing data and estimating the impact of decision-making based on the extracted knowledge. A case study is developed on experimental data coming from winter wheat (Triticum aestivum) crops receiving site-specific fertilisation. A first approximation to the data allows measuring the effects of the fertilisation treatments on the yield and quality of the crops. After verifying the significance of such effects, clustering analysis is applied on sensor readings on vegetation and soil electric conductivity in order to automatically learn the best configuration of zones for differentiated treatment. The complete methodology for identifying management zones from vegetation and soil sensing is validated for two experimental sites in Denmark, estimating its potential impact for decision-making on site-specific N fertilisation.
学习管理区对特定地点氮肥的潜在影响:以小麦作物为例
本文提出了一种用于精准农业的自动机器学习方法,旨在学习管理区域,以便更有效和可持续地使用肥料。具体而言,该方法包括遥感数据聚类和基于提取的知识估计决策影响。对冬小麦(Triticum aestivum)作物接受特定地点施肥的实验数据进行了案例研究。对数据的第一个近似可以测量施肥处理对作物产量和质量的影响。在验证了这些效应的显著性后,对植被和土壤电导率的传感器读数进行聚类分析,自动学习分区的最佳配置进行差异化处理。通过植被和土壤传感确定管理区域的完整方法在丹麦的两个试验点得到了验证,估计了其对特定地点氮肥决策的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信