Total positivity in multivariate extremes

Frank Rottger, Sebastian Engelke, Piotr Zwiernik
{"title":"Total positivity in multivariate extremes","authors":"Frank Rottger, Sebastian Engelke, Piotr Zwiernik","doi":"10.1214/23-aos2272","DOIUrl":null,"url":null,"abstract":"Positive dependence is present in many real world data sets and has appealing stochastic properties that can be exploited in statistical modeling and in estimation. In particular, the notion of multivariate total positivity of order 2 ($ \\mathrm{MTP}_{2} $) is a convex constraint and acts as an implicit regularizer in the Gaussian case. We study positive dependence in multivariate extremes and introduce $ \\mathrm{EMTP}_{2} $, an extremal version of $ \\mathrm{MTP}_{2} $. This notion turns out to appear prominently in extremes, and in fact, it is satisfied by many classical models. For a H\\\"usler--Reiss distribution, the analogue of a Gaussian distribution in extremes, we show that it is $ \\mathrm{EMTP}_{2} $ if and only if its precision matrix is a Laplacian of a connected graph. We propose an estimator for the parameters of the H\\\"usler--Reiss distribution under $ \\mathrm{EMTP}_{2} $ as the solution of a convex optimization problem with Laplacian constraint. We prove that this estimator is consistent and typically yields a sparse model with possibly nondecomposable extremal graphical structure. Applying our methods to a data set of Danube River flows, we illustrate this regularization and the superior performance compared to existing methods.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Positive dependence is present in many real world data sets and has appealing stochastic properties that can be exploited in statistical modeling and in estimation. In particular, the notion of multivariate total positivity of order 2 ($ \mathrm{MTP}_{2} $) is a convex constraint and acts as an implicit regularizer in the Gaussian case. We study positive dependence in multivariate extremes and introduce $ \mathrm{EMTP}_{2} $, an extremal version of $ \mathrm{MTP}_{2} $. This notion turns out to appear prominently in extremes, and in fact, it is satisfied by many classical models. For a H\"usler--Reiss distribution, the analogue of a Gaussian distribution in extremes, we show that it is $ \mathrm{EMTP}_{2} $ if and only if its precision matrix is a Laplacian of a connected graph. We propose an estimator for the parameters of the H\"usler--Reiss distribution under $ \mathrm{EMTP}_{2} $ as the solution of a convex optimization problem with Laplacian constraint. We prove that this estimator is consistent and typically yields a sparse model with possibly nondecomposable extremal graphical structure. Applying our methods to a data set of Danube River flows, we illustrate this regularization and the superior performance compared to existing methods.
多元极值中的总正性
正相关性存在于许多真实世界的数据集中,并且具有可用于统计建模和估计的吸引人的随机特性。特别地,2阶($ \ mathm {MTP}_{2} $)的多元全正性的概念是一个凸约束,在高斯情况下充当隐式正则化器。我们研究了多元极值的正相关性,并引入了$ \ mathm {EMTP}_{2} $的极值版本$ \ mathm {MTP}_{2} $。这个概念在极端情况下很明显,事实上,它被许多经典模型所满足。对于一个H\ \ usler—Reiss分布,一个极值高斯分布的模拟,我们证明了它是$ \ mathm {EMTP}_{2} $当且仅当它的精度矩阵是连通图的拉普拉斯矩阵。我们提出了$ \ mathm {EMTP}_{2} $条件下H\ \ usler—Reiss分布参数的一个估计量,作为具有拉普拉斯约束的凸优化问题的解。我们证明了这个估计量是一致的,并且通常会得到一个可能具有不可分解的极值图结构的稀疏模型。将我们的方法应用于多瑙河流量的数据集,我们说明了这种正则化和与现有方法相比优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信