Suatu Kajian Tentang Bilangan Sempurna

Q4 Mathematics
Saiful Amri, M. Mahmudi
{"title":"Suatu Kajian Tentang Bilangan Sempurna","authors":"Saiful Amri, M. Mahmudi","doi":"10.24815/JDA.V2I1.12421","DOIUrl":null,"url":null,"abstract":"Dalam tulisan ini akan dijelaskan mengenai kriteria bilangan sempurna genap dan bentuk bilangan sempurna ganjil (jika ada). Jika $2^k-1$  prima maka $2^{k-1}(2^k-1)$  berupa bilangan sempurna. Sebaliknya, semua bilangan sempurna genap berbentuk $2^{k-1}(2^k-1)$ , dimana $2^k-1$ prima. Maka masalah menentukan bilangan sempurna genap setara dengan menentukan $k$ sehingga $2^k-1$  prima. Bilangan $2^k-1$ disebut sebagai bilangan Mersenne dan ditulis dengan $M_k$. In this paper will be explained about the criteria of the even perfect numbers and the form of odd perfect numbers (if any). If is prime, then is perfect. Conversely, all even perfect numbers are of the form with is a prime. Thus, finding even perfect numbers is equivalent to find the integers for which is prime. The numbers of the form called Mersenne numbers and is denoted by .","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24815/JDA.V2I1.12421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Dalam tulisan ini akan dijelaskan mengenai kriteria bilangan sempurna genap dan bentuk bilangan sempurna ganjil (jika ada). Jika $2^k-1$  prima maka $2^{k-1}(2^k-1)$  berupa bilangan sempurna. Sebaliknya, semua bilangan sempurna genap berbentuk $2^{k-1}(2^k-1)$ , dimana $2^k-1$ prima. Maka masalah menentukan bilangan sempurna genap setara dengan menentukan $k$ sehingga $2^k-1$  prima. Bilangan $2^k-1$ disebut sebagai bilangan Mersenne dan ditulis dengan $M_k$. In this paper will be explained about the criteria of the even perfect numbers and the form of odd perfect numbers (if any). If is prime, then is perfect. Conversely, all even perfect numbers are of the form with is a prime. Thus, finding even perfect numbers is equivalent to find the integers for which is prime. The numbers of the form called Mersenne numbers and is denoted by .
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信