{"title":"Optimal Design for Suppressing Time Fluctuation Part of Two-Dimensional Jet in Crossflow","authors":"Takashi Nakazawa, T. Misaka, Y. Hasegawa","doi":"10.1080/10618562.2022.2051496","DOIUrl":null,"url":null,"abstract":"This paper proposes a shape optimisation method for suppressing a time fluctuation part of the two-dimensional jet-in-cross flow. Previously, the author has formulated a shape optimisation problem for suppressing transient fluids using Snapshot proper orthogonal decomposition (POD). This study extends it to a two-dimensional jet-in-cross flow. For this purpose, the eigenvalues of Snapshot POD are integrated to a cost function, where the constraint functions are the nonstationary Navier–Stokes equation and the eigenvalue equation of Snapshot POD. An objective functional is described using Lagrange multipliers and the finite element method as the sum of the cost and constraint functions. To verify the proposed optimisation strategy, using the gradient method for domain deformation, all triangles over a mesh are deformed, which causes the cost function to decrease. Finally, the eigenvalues of Snapshot POD in the initial and optimal domains are compared.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"8 1","pages":"112 - 124"},"PeriodicalIF":1.1000,"publicationDate":"2022-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2022.2051496","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a shape optimisation method for suppressing a time fluctuation part of the two-dimensional jet-in-cross flow. Previously, the author has formulated a shape optimisation problem for suppressing transient fluids using Snapshot proper orthogonal decomposition (POD). This study extends it to a two-dimensional jet-in-cross flow. For this purpose, the eigenvalues of Snapshot POD are integrated to a cost function, where the constraint functions are the nonstationary Navier–Stokes equation and the eigenvalue equation of Snapshot POD. An objective functional is described using Lagrange multipliers and the finite element method as the sum of the cost and constraint functions. To verify the proposed optimisation strategy, using the gradient method for domain deformation, all triangles over a mesh are deformed, which causes the cost function to decrease. Finally, the eigenvalues of Snapshot POD in the initial and optimal domains are compared.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.