Alternative approaches for low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell

B. Shu, U. Das, J. Appel, B. McCandless, S. Hegedus, R. Birkmire
{"title":"Alternative approaches for low temperature front surface passivation of interdigitated back contact silicon heterojunction solar cell","authors":"B. Shu, U. Das, J. Appel, B. McCandless, S. Hegedus, R. Birkmire","doi":"10.1109/PVSC.2010.5616755","DOIUrl":null,"url":null,"abstract":"In this work, we investigated two alternative approaches for the front surface passivation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells: (1) with plasma enhanced chemical vapor deposited (PEVCD) a-Si-based stack structure consisting of a-Si:H/a-SiNx:H/a-SiC:H, and (2) with physical vapor deposited (PVD) zinc sulfide (ZnS) film. The processing temperatures for both the approaches are under 300°C. Effective surface recombination velocities (SRV) of < 6.2cm/s and < 35cm/s are obtained with stack structure and ZnS respectively on n-type float zone (FZ) crystalline silicon (c-Si) wafers. The anti-reflection (AR) properties of these two passivation approaches are studied and the optimization procedure of the stack structure was discussed and shown to improve the photo-generated current. The IBC-SHJ solar cells were fabricated using both the front surface passivation approaches and a 15% cell efficiency was achieved on 150µm thick FZ c-Si wafer without surface texturing and optical optimization.","PeriodicalId":6424,"journal":{"name":"2010 35th IEEE Photovoltaic Specialists Conference","volume":"47 1","pages":"003223-003228"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 35th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2010.5616755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this work, we investigated two alternative approaches for the front surface passivation of interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells: (1) with plasma enhanced chemical vapor deposited (PEVCD) a-Si-based stack structure consisting of a-Si:H/a-SiNx:H/a-SiC:H, and (2) with physical vapor deposited (PVD) zinc sulfide (ZnS) film. The processing temperatures for both the approaches are under 300°C. Effective surface recombination velocities (SRV) of < 6.2cm/s and < 35cm/s are obtained with stack structure and ZnS respectively on n-type float zone (FZ) crystalline silicon (c-Si) wafers. The anti-reflection (AR) properties of these two passivation approaches are studied and the optimization procedure of the stack structure was discussed and shown to improve the photo-generated current. The IBC-SHJ solar cells were fabricated using both the front surface passivation approaches and a 15% cell efficiency was achieved on 150µm thick FZ c-Si wafer without surface texturing and optical optimization.
交叉后接触硅异质结太阳能电池低温前表面钝化的几种方法
在这项工作中,我们研究了两种可选的交叉背接触硅异质结(IBC-SHJ)太阳能电池前表面钝化的方法:(1)等离子体增强化学气相沉积(PEVCD)由a-Si:H/a-SiNx:H/a-SiC:H组成的a-Si基堆栈结构,以及(2)物理气相沉积(PVD)硫化锌(ZnS)薄膜。这两种方法的加工温度都在300℃以下。在n型浮子区(FZ)晶体硅(c-Si)晶圆上,采用堆叠结构和ZnS分别获得了< 6.2cm/s和< 35cm/s的有效表面复合速度(SRV)。研究了这两种钝化方法的增透性能,并讨论了优化堆栈结构的方法,以提高光产生电流。采用前表面钝化方法制备了IBC-SHJ太阳能电池,在150µm厚的FZ c-Si晶片上,无需表面纹理和光学优化,电池效率达到15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信