Computational Topic Models of the Library Quarterly

IF 0.8 4区 管理学 Q3 INFORMATION SCIENCE & LIBRARY SCIENCE
C. Hennesy, David Naughton
{"title":"Computational Topic Models of the Library Quarterly","authors":"C. Hennesy, David Naughton","doi":"10.1353/pla.2022.0030","DOIUrl":null,"url":null,"abstract":"abstract:This case study demonstrates the application of an unsupervised topic modeling algorithm to 7,773 English-language articles published in the Library Quarterly from 1931 to 2015. The analysis of 85 years of the journal’s output follows an exploratory data analysis framework to generate novel hypotheses about the history of LIS using topic modeling, a method for identifying clusters of co-occurring words within large collections of text. The paper closely examines two topics that suggest differences in gender representation in the journal to propose and support a new hypothesis regarding the historical inclusion of gendered objects of study in LIS literature.","PeriodicalId":51670,"journal":{"name":"Portal-Libraries and the Academy","volume":"78 1","pages":"745 - 768"},"PeriodicalIF":0.8000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Portal-Libraries and the Academy","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1353/pla.2022.0030","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

abstract:This case study demonstrates the application of an unsupervised topic modeling algorithm to 7,773 English-language articles published in the Library Quarterly from 1931 to 2015. The analysis of 85 years of the journal’s output follows an exploratory data analysis framework to generate novel hypotheses about the history of LIS using topic modeling, a method for identifying clusters of co-occurring words within large collections of text. The paper closely examines two topics that suggest differences in gender representation in the journal to propose and support a new hypothesis regarding the historical inclusion of gendered objects of study in LIS literature.
图书馆季刊的计算主题模型
本案例研究展示了一种无监督主题建模算法在《图书馆季刊》1931 - 2015年间发表的7773篇英文文章中的应用。对期刊85年产出的分析遵循探索性数据分析框架,使用主题建模生成关于LIS历史的新假设,主题建模是一种在大量文本集合中识别共同出现的单词簇的方法。本文仔细研究了期刊中性别表现差异的两个主题,提出并支持了一个关于美国文学中性别研究对象的历史纳入的新假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Portal-Libraries and the Academy
Portal-Libraries and the Academy INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
1.80
自引率
8.30%
发文量
53
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信