Samavia Jaan, S. Waheed, S. Bashir, M. Javed, A. Amjad, U. Nishan, H. Nawaz, M. Shah
{"title":"Virtual Screening and Molecular Docking of FDA Approved Antiviral Drugs for the Identification of Potential Inhibitors of SARS-CoV-2 RNA-MTase Protein","authors":"Samavia Jaan, S. Waheed, S. Bashir, M. Javed, A. Amjad, U. Nishan, H. Nawaz, M. Shah","doi":"10.22034/IJABBR.2021.46320","DOIUrl":null,"url":null,"abstract":"Background: SARS-CoV-2 is a novel coronavirus discovered in December 2019 and is responsible for pandemic disease COVID-19. In the absence of any available vaccines or drugs to combat the virus, it has caused enormous damage. Methods: An in-silico docking approach was applied to determine potential inhibitors of SARS-CoV-2 RNA-MTase by screening against a ligand library of FDA approved antiviral compounds. Results: Ten compounds including Daclatasvir, Pibrentasvir, Tenofovir, Velpatasvir, Grazoprevir, Ledipasvir, Elbasvir, Delavirdine, Nilutamide, and Ribavirin triphosphate showed a strong binding affinity with RNA-MTase of which Daclatasvir and Pibrentasvir exhibited the highest affinity. Moreover, Daclatasvir, Grazoprevir, and Tenofovir, which have recently been reported to have a binding affinity with other SARS-CoV-2 proteins, showed good binding interactions with RNA-MTase, suggesting a role to act as dual inhibitors. Conclusion: The suggested antiviral compounds can tightly bind to RNA-MTase of SARS-Cov-2 and thus have the potential to be used against this deadly virus. Importantly, as FDA already approved, these drugs do not need to undergo toxicity evaluation.","PeriodicalId":13887,"journal":{"name":"International journal of Advanced Biological and Biomedical Research","volume":"47 1","pages":"105-118"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of Advanced Biological and Biomedical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IJABBR.2021.46320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Background: SARS-CoV-2 is a novel coronavirus discovered in December 2019 and is responsible for pandemic disease COVID-19. In the absence of any available vaccines or drugs to combat the virus, it has caused enormous damage. Methods: An in-silico docking approach was applied to determine potential inhibitors of SARS-CoV-2 RNA-MTase by screening against a ligand library of FDA approved antiviral compounds. Results: Ten compounds including Daclatasvir, Pibrentasvir, Tenofovir, Velpatasvir, Grazoprevir, Ledipasvir, Elbasvir, Delavirdine, Nilutamide, and Ribavirin triphosphate showed a strong binding affinity with RNA-MTase of which Daclatasvir and Pibrentasvir exhibited the highest affinity. Moreover, Daclatasvir, Grazoprevir, and Tenofovir, which have recently been reported to have a binding affinity with other SARS-CoV-2 proteins, showed good binding interactions with RNA-MTase, suggesting a role to act as dual inhibitors. Conclusion: The suggested antiviral compounds can tightly bind to RNA-MTase of SARS-Cov-2 and thus have the potential to be used against this deadly virus. Importantly, as FDA already approved, these drugs do not need to undergo toxicity evaluation.