Empirical Model for Estimating Measured Monthly Average Global Solar Radiation in Lawra using TMY Data

A. Sunnu, Abdul-Rahim Bawa, Adams Yunus, Emmanuel A. Sarsah, J. A. Akanbasiam, Philemon K. Mensah
{"title":"Empirical Model for Estimating Measured Monthly Average Global Solar Radiation in Lawra using TMY Data","authors":"A. Sunnu, Abdul-Rahim Bawa, Adams Yunus, Emmanuel A. Sarsah, J. A. Akanbasiam, Philemon K. Mensah","doi":"10.24018/ejeng.2023.8.1.2975","DOIUrl":null,"url":null,"abstract":"In this study, simple and multiple regression models were developed to estimate the monthly average daily global solar radiation in Lawra, Ghana using ground measurement of global horizontal irradiance (Nov 2020–May 2022) and typical meteorological year (TMY) data (Jan 2017–Dec 2019). Various predictor variables such as sunshine ratio, minimum relative humidity and maximum relative humidity ratio, minimum and maximum temperature ratio, etc. were correlated from the TMY data. Many model equations were developed with the variables ranging from one to eight. The best model from each category was chosen and compared using statistical indices to determine the overall best model. We used the JMP statistical software’s ‘All Possible Models’ functionality to select the best model from each category. The selected models where then compared using the adjusted R-squared, mean absolute percentage error, and the root mean square error statistical indices. The best model equation correlated with eight independent variables with adjusted R-squared of 0.99. The equation can be used to estimate monthly global solar radiation in Lawra and in locations with similar climatic conditions where ground measurement of radiation data is unavailable but have access to the National Solar Radiation Database’s (NSRDB) TMY data.","PeriodicalId":12001,"journal":{"name":"European Journal of Engineering and Technology Research","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Engineering and Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24018/ejeng.2023.8.1.2975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, simple and multiple regression models were developed to estimate the monthly average daily global solar radiation in Lawra, Ghana using ground measurement of global horizontal irradiance (Nov 2020–May 2022) and typical meteorological year (TMY) data (Jan 2017–Dec 2019). Various predictor variables such as sunshine ratio, minimum relative humidity and maximum relative humidity ratio, minimum and maximum temperature ratio, etc. were correlated from the TMY data. Many model equations were developed with the variables ranging from one to eight. The best model from each category was chosen and compared using statistical indices to determine the overall best model. We used the JMP statistical software’s ‘All Possible Models’ functionality to select the best model from each category. The selected models where then compared using the adjusted R-squared, mean absolute percentage error, and the root mean square error statistical indices. The best model equation correlated with eight independent variables with adjusted R-squared of 0.99. The equation can be used to estimate monthly global solar radiation in Lawra and in locations with similar climatic conditions where ground measurement of radiation data is unavailable but have access to the National Solar Radiation Database’s (NSRDB) TMY data.
利用TMY资料估算Lawra月平均全球太阳辐射的经验模型
在本研究中,利用地面测量的全球水平辐照度(2020年11月至2022年5月)和典型气象年(TMY)数据(2017年1月至2019年12月),开发了简单和多元回归模型,以估算加纳Lawra的月平均日全球太阳辐射。利用TMY数据对日照比、最小相对湿度和最大相对湿度比、最小温度和最高温度比等预测变量进行了相关性分析。许多模型方程的变量从1到8不等。从每个类别中选择最佳模型,并使用统计指标进行比较,以确定总体最佳模型。我们使用JMP统计软件的“所有可能的模型”功能从每个类别中选择最佳模型。然后使用调整后的r平方、平均绝对百分比误差和均方根误差统计指标对所选模型进行比较。最佳模型方程与8个自变量相关,调整后的r平方为0.99。该方程可用于估算Lawra和气候条件类似的地区的每月全球太阳辐射,这些地区无法获得地面辐射测量数据,但可以访问国家太阳辐射数据库(NSRDB)的TMY数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信