{"title":"SOME RESULTS ON LIE IDEALS WITH SYMMETRIC REVERSE BI-DERIVATIONS IN SEMIPRIME RINGS I","authors":"Emine Koc Sogutcu, Ö. Gölbasi","doi":"10.22190/FUMI200708023K","DOIUrl":null,"url":null,"abstract":"Let R be a semiprime ring, U a square-closed Lie ideal of R and D : R R ! R a symmetric reverse bi-derivation and d be the trace of D: In the present paper, we shall prove that R commutative ring if any one of the following holds: i) d(U) = (0); ii)d(U) Z; iii)[d (x) ; y] 2 Z; iv)d(x)oy 2 Z; v)d ([x; y])[d(x); y] 2 Z; vi)d (x y)(d(x)y) 2 Z; vii)d ([x; y])d(x)y 2 Z viii)d (x y) [d(x); y] 2 Z; ix)d(x) y [d(y); x] 2 Z; x)d([x; y]) (d(x) y) [d(y); x] 2 Z xi)[d(x); y] [g(y); x] 2 Z; for all x; y 2 U; where G : R R ! R is symmetric reverse bi-derivations such that g is the trace of","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI200708023K","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let R be a semiprime ring, U a square-closed Lie ideal of R and D : R R ! R a symmetric reverse bi-derivation and d be the trace of D: In the present paper, we shall prove that R commutative ring if any one of the following holds: i) d(U) = (0); ii)d(U) Z; iii)[d (x) ; y] 2 Z; iv)d(x)oy 2 Z; v)d ([x; y])[d(x); y] 2 Z; vi)d (x y)(d(x)y) 2 Z; vii)d ([x; y])d(x)y 2 Z viii)d (x y) [d(x); y] 2 Z; ix)d(x) y [d(y); x] 2 Z; x)d([x; y]) (d(x) y) [d(y); x] 2 Z xi)[d(x); y] [g(y); x] 2 Z; for all x; y 2 U; where G : R R ! R is symmetric reverse bi-derivations such that g is the trace of