Robust topological features for deformation invariant image matching

E. Lobaton, Ramanarayan Vasudevan, R. Alterovitz, R. Bajcsy
{"title":"Robust topological features for deformation invariant image matching","authors":"E. Lobaton, Ramanarayan Vasudevan, R. Alterovitz, R. Bajcsy","doi":"10.1109/ICCV.2011.6126538","DOIUrl":null,"url":null,"abstract":"Local photometric descriptors are a crucial low level component of numerous computer vision algorithms. In practice, these descriptors are constructed to be invariant to a class of transformations. However, the development of a descriptor that is simultaneously robust to noise and invariant under general deformation has proven difficult. In this paper, we introduce the Topological-Attributed Relational Graph (T-ARG), a new local photometric descriptor constructed from homology that is provably invariant to locally bounded deformation. This new robust topological descriptor is backed by a formal mathematical framework. We apply T-ARG to a set of benchmark images to evaluate its performance. Results indicate that T-ARG significantly outperforms traditional descriptors for noisy, deforming images.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":"22 1","pages":"2516-2523"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Local photometric descriptors are a crucial low level component of numerous computer vision algorithms. In practice, these descriptors are constructed to be invariant to a class of transformations. However, the development of a descriptor that is simultaneously robust to noise and invariant under general deformation has proven difficult. In this paper, we introduce the Topological-Attributed Relational Graph (T-ARG), a new local photometric descriptor constructed from homology that is provably invariant to locally bounded deformation. This new robust topological descriptor is backed by a formal mathematical framework. We apply T-ARG to a set of benchmark images to evaluate its performance. Results indicate that T-ARG significantly outperforms traditional descriptors for noisy, deforming images.
形变不变图像匹配的鲁棒拓扑特征
局部光度描述符是众多计算机视觉算法中至关重要的底层组成部分。在实践中,这些描述符被构造为对于一类转换是不变的。然而,开发一种同时对噪声具有鲁棒性和在一般变形下不变性的描述子已被证明是困难的。本文引入了拓扑属性关系图(T-ARG),这是一种由同调构造的新的局部光度描述子,它对局部有界变形是可证明不变的。这种新的鲁棒拓扑描述符由形式化的数学框架支持。我们将T-ARG应用于一组基准图像来评估其性能。结果表明,T-ARG显著优于传统的描述符对噪声,变形图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信