Image Denoising Using Hybrid Deep Learning Approach and Self-Improved Orca Predation Algorithm

Rusul Sabah Jebur, Mohd Hazli Mohamed Zabil, D. Hammood, Lim Kok Cheng, Ali Al-Naji
{"title":"Image Denoising Using Hybrid Deep Learning Approach and Self-Improved Orca Predation Algorithm","authors":"Rusul Sabah Jebur, Mohd Hazli Mohamed Zabil, D. Hammood, Lim Kok Cheng, Ali Al-Naji","doi":"10.3390/technologies11040111","DOIUrl":null,"url":null,"abstract":"Image denoising is a critical task in computer vision aimed at removing unwanted noise from images, which can degrade image quality and affect visual details. This study proposes a novel approach that combines deep hybrid learning with the Self-Improved Orca Predation Algorithm (SI-OPA) for image denoising. Leveraging Bidirectional Long Short-Term Memory (Bi-LSTM) and optimized Convolutional Neural Networks (CNN), the hybrid model aims to enhance denoising performance. The CNN’s weights are optimized using SI-OPA, resulting in improved denoising accuracy. Extensive comparisons against state-of-the-art denoising methods, including traditional algorithms and deep learning-based techniques, are conducted, focusing on denoising effectiveness, computational efficiency, and preservation of image details. The proposed approach demonstrates superior performance in all aspects, highlighting its potential as a promising solution for image-denoising tasks. Implemented in Python, the hybrid model showcases the benefits of combining Bi-LSTM, optimized CNN, and SI-OPA for advanced image-denoising applications.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies11040111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image denoising is a critical task in computer vision aimed at removing unwanted noise from images, which can degrade image quality and affect visual details. This study proposes a novel approach that combines deep hybrid learning with the Self-Improved Orca Predation Algorithm (SI-OPA) for image denoising. Leveraging Bidirectional Long Short-Term Memory (Bi-LSTM) and optimized Convolutional Neural Networks (CNN), the hybrid model aims to enhance denoising performance. The CNN’s weights are optimized using SI-OPA, resulting in improved denoising accuracy. Extensive comparisons against state-of-the-art denoising methods, including traditional algorithms and deep learning-based techniques, are conducted, focusing on denoising effectiveness, computational efficiency, and preservation of image details. The proposed approach demonstrates superior performance in all aspects, highlighting its potential as a promising solution for image-denoising tasks. Implemented in Python, the hybrid model showcases the benefits of combining Bi-LSTM, optimized CNN, and SI-OPA for advanced image-denoising applications.
基于混合深度学习和自改进逆戟鲸捕食算法的图像去噪
图像去噪是计算机视觉中的一项关键任务,它旨在去除图像中不需要的噪声,这些噪声会降低图像质量并影响视觉细节。本研究提出了一种将深度混合学习与自改进逆戟鲸捕食算法(SI-OPA)相结合的图像去噪方法。利用双向长短期记忆(Bi-LSTM)和优化的卷积神经网络(CNN),混合模型旨在提高去噪性能。CNN的权重使用SI-OPA进行优化,从而提高了去噪精度。与最先进的去噪方法(包括传统算法和基于深度学习的技术)进行了广泛的比较,重点是去噪效果、计算效率和图像细节的保存。所提出的方法在各个方面都表现出优异的性能,突出了其作为图像去噪任务的有前途的解决方案的潜力。在Python中实现的混合模型展示了将Bi-LSTM,优化的CNN和SI-OPA结合起来用于高级图像去噪应用的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信