Generalized Dehn twists on surfaces and homology cylinders

Y. Kuno, G. Massuyeau
{"title":"Generalized Dehn twists on surfaces and homology cylinders","authors":"Y. Kuno, G. Massuyeau","doi":"10.2140/AGT.2021.21.697","DOIUrl":null,"url":null,"abstract":"Let $\\Sigma$ be a compact oriented surface. The Dehn twist along every simple closed curve $\\gamma \\subset \\Sigma$ induces an automorphism of the fundamental group $\\pi$ of $\\Sigma$. There are two possible ways to generalize such automorphisms if the curve $\\gamma$ is allowed to have self-intersections. One way is to consider the `generalized Dehn twist' along $\\gamma$: an automorphism of the Malcev completion of $\\pi$ whose definition involves intersection operations and only depends on the homotopy class $[\\gamma]\\in \\pi$ of $\\gamma$. Another way is to choose in the usual cylinder $U:=\\Sigma \\times [-1,+1]$ a knot $L$ projecting onto $\\gamma$, to perform a surgery along $L$ so as to get a homology cylinder $U_L$, and let $U_L$ act on every nilpotent quotient $\\pi/\\Gamma_{j} \\pi$ of $\\pi$ (where $\\Gamma_j\\pi$ denotes the subgroup of $\\pi$ generated by commutators of length $j$). In this paper, assuming that $[\\gamma]$ is in $\\Gamma_k \\pi$ for some $k\\geq 2$, we prove that (whatever the choice of $L$ is) the automorphism of $\\pi/\\Gamma_{2k+1} \\pi$ induced by $U_L$ agrees with the generalized Dehn twist along $\\gamma$ and we explicitly compute this automorphism in terms of $[\\gamma]$ modulo ${\\Gamma_{k+2}}\\pi$. As applications, we obtain new formulas for certain evaluations of the Johnson homomorphisms showing, in particular, how to realize any element of their targets by some explicit homology cylinders and/or generalized Dehn twists.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2021.21.697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Let $\Sigma$ be a compact oriented surface. The Dehn twist along every simple closed curve $\gamma \subset \Sigma$ induces an automorphism of the fundamental group $\pi$ of $\Sigma$. There are two possible ways to generalize such automorphisms if the curve $\gamma$ is allowed to have self-intersections. One way is to consider the `generalized Dehn twist' along $\gamma$: an automorphism of the Malcev completion of $\pi$ whose definition involves intersection operations and only depends on the homotopy class $[\gamma]\in \pi$ of $\gamma$. Another way is to choose in the usual cylinder $U:=\Sigma \times [-1,+1]$ a knot $L$ projecting onto $\gamma$, to perform a surgery along $L$ so as to get a homology cylinder $U_L$, and let $U_L$ act on every nilpotent quotient $\pi/\Gamma_{j} \pi$ of $\pi$ (where $\Gamma_j\pi$ denotes the subgroup of $\pi$ generated by commutators of length $j$). In this paper, assuming that $[\gamma]$ is in $\Gamma_k \pi$ for some $k\geq 2$, we prove that (whatever the choice of $L$ is) the automorphism of $\pi/\Gamma_{2k+1} \pi$ induced by $U_L$ agrees with the generalized Dehn twist along $\gamma$ and we explicitly compute this automorphism in terms of $[\gamma]$ modulo ${\Gamma_{k+2}}\pi$. As applications, we obtain new formulas for certain evaluations of the Johnson homomorphisms showing, in particular, how to realize any element of their targets by some explicit homology cylinders and/or generalized Dehn twists.
曲面和同调柱面上的广义Dehn扭转
设$\Sigma$为紧致定向曲面。沿每条简单闭曲线$\gamma \subset \Sigma$的Dehn扭转引起$\Sigma$的基本群$\pi$的自同构。如果允许曲线$\gamma$具有自交,则有两种可能的方法来推广这种自同构。一种方法是考虑$\gamma$上的“广义Dehn扭转”:$\pi$的Malcev补全的自同构,其定义涉及交操作并且仅依赖于$\gamma$的同伦类$[\gamma]\in \pi$。另一种方法是在通常的$U:=\Sigma \times [-1,+1]$柱面上选择一个结点$L$投影到$\gamma$上,沿着$L$进行手术,得到一个同源柱面$U_L$,并让$U_L$作用于$\pi$的每一个幂零商$\pi/\Gamma_{j} \pi$(其中$\Gamma_j\pi$表示长度为$j$的对易子产生的$\pi$子群)。本文假设$[\gamma]$对于某个$k\geq 2$在$\Gamma_k \pi$中,证明了(无论$L$的选择是什么)由$U_L$引起的$\pi/\Gamma_{2k+1} \pi$的自同构符合沿$\gamma$的广义Dehn扭曲,并明确地计算了$[\gamma]$模${\Gamma_{k+2}}\pi$的自同构。作为应用,我们得到了Johnson同态的某些评价的新公式,特别是如何通过一些显式同态柱面和/或广义Dehn扭转来实现其目标的任何元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信