Sharp critical thresholds in a hyperbolic system with relaxation

Manas Bhatnagar, Hailiang Liu
{"title":"Sharp critical thresholds in a hyperbolic system with relaxation","authors":"Manas Bhatnagar, Hailiang Liu","doi":"10.3934/dcds.2021098","DOIUrl":null,"url":null,"abstract":"We propose and study a one-dimensional $2\\times 2$ hyperbolic Eulerian system with local relaxation from critical threshold phenomena perspective. The system features dynamic transition between strictly and weakly hyperbolic. For different classes of relaxation we identify intrinsic critical thresholds for initial data that distinguish global regularity and finite time blowup. For relaxation independent of density, we estimate bounds on density in terms of velocity where the system is strictly hyperbolic.","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcds.2021098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose and study a one-dimensional $2\times 2$ hyperbolic Eulerian system with local relaxation from critical threshold phenomena perspective. The system features dynamic transition between strictly and weakly hyperbolic. For different classes of relaxation we identify intrinsic critical thresholds for initial data that distinguish global regularity and finite time blowup. For relaxation independent of density, we estimate bounds on density in terms of velocity where the system is strictly hyperbolic.
带松弛的双曲系统的尖锐临界阈值
从临界阈现象的角度,提出并研究了一类具有局部松弛的一元$2\ × 2$双曲欧拉系统。系统具有严格双曲型和弱双曲型之间的动态过渡。对于不同类型的松弛,我们确定了初始数据的内在临界阈值,以区分全局正则性和有限时间爆炸。对于与密度无关的松弛,我们用速度来估计密度的界限,其中系统是严格双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信