Level-Rank Duality for Vertex Operator Algebras of types B and D

IF 0.1 Q4 MATHEMATICS
Cuipo Jiang, C. Lam
{"title":"Level-Rank Duality for Vertex Operator Algebras of types B and D","authors":"Cuipo Jiang, C. Lam","doi":"10.21915/BIMAS.2019103","DOIUrl":null,"url":null,"abstract":"For the simple Lie algebra $ \\frak{so}_m$, we study the commutant vertex operator algebra of $ L_{\\widehat{\\frak{so}}_{m}}(n,0)$ in the $n$-fold tensor product $ L_{\\widehat{\\frak{so}}_{m}}(1,0)^{\\otimes n}$. It turns out that this commutant vertex operator algebra can be realized as a fixed point subalgebra of $L_{\\widehat{\\frak{so}}_{n}}(m,0)$ (or its simple current extension) associated with a certain abelian group. This result may be viewed as a version of level-rank duality.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"38 11 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2019103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

For the simple Lie algebra $ \frak{so}_m$, we study the commutant vertex operator algebra of $ L_{\widehat{\frak{so}}_{m}}(n,0)$ in the $n$-fold tensor product $ L_{\widehat{\frak{so}}_{m}}(1,0)^{\otimes n}$. It turns out that this commutant vertex operator algebra can be realized as a fixed point subalgebra of $L_{\widehat{\frak{so}}_{n}}(m,0)$ (or its simple current extension) associated with a certain abelian group. This result may be viewed as a version of level-rank duality.
B和D型顶点算子代数的水平-秩对偶性
对于简单李代数$ \frak{so}_m$,我们研究了$ L_{\widehat{\frak{so}}_{m}}(n,0)$在$n$-fold张量积$ L_{\widehat{\frak{so}}_{m}}(1,0)^{\otimes n}$中的交换顶点算子代数$ L_{\widehat{\frak{so}}}(n,0)$。结果表明,该对易顶点算子代数可以被实现为$L_{\widehat{\frak{so}}_{n}}(m,0)$(或其简单的当前扩展)与某个阿贝群相关联的不动点子代数。这个结果可以看作是等级对偶的一个版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信