{"title":"ELECTROCONVECTION INSTABILITY OF POORLY CONDUCTING FLUID IN ALTERNATING ELECTRIC FIELD","authors":"O. Nekrasov, N. Kartavykh","doi":"10.1615/interfacphenomheattransfer.2019030611","DOIUrl":null,"url":null,"abstract":"The flat horizontal layer of the poorly conducting fluid is placed in the alternating electric field and heated from above. Its behavior is investigated in the electroconvection low-mode model. The approximation in which density and conductivity of the fluid are linearly dependent on temperature is used. Linear instability is analyzed by means of the Floquet theory. The system of eight differential equations, which describe the motion of the fluid, is integrated using the Runge-Kutta-Merson fourth-order method. The marginal stability curves are plotted in coordinates “wave number – nondimensional electric parameter.” The critical values of the wave number and the nondimensional electric parameter are determined for various external influence frequencies. The nonlinear regimes of the fluid flow are investigated at the critical value of the wave number. The fluid electroconvection flow intensity as a function of the nondimensional electric parameter is plotted. The various types of the oscillation regimes are discovered, and the competition regions of different electroconvection modes with various flow intensities are found.","PeriodicalId":44077,"journal":{"name":"Interfacial Phenomena and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfacial Phenomena and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/interfacphenomheattransfer.2019030611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The flat horizontal layer of the poorly conducting fluid is placed in the alternating electric field and heated from above. Its behavior is investigated in the electroconvection low-mode model. The approximation in which density and conductivity of the fluid are linearly dependent on temperature is used. Linear instability is analyzed by means of the Floquet theory. The system of eight differential equations, which describe the motion of the fluid, is integrated using the Runge-Kutta-Merson fourth-order method. The marginal stability curves are plotted in coordinates “wave number – nondimensional electric parameter.” The critical values of the wave number and the nondimensional electric parameter are determined for various external influence frequencies. The nonlinear regimes of the fluid flow are investigated at the critical value of the wave number. The fluid electroconvection flow intensity as a function of the nondimensional electric parameter is plotted. The various types of the oscillation regimes are discovered, and the competition regions of different electroconvection modes with various flow intensities are found.
期刊介绍:
Interfacial Phenomena and Heat Transfer aims to serve as a forum to advance understanding of fundamental and applied areas on interfacial phenomena, fluid flow, and heat transfer through interdisciplinary research. The special feature of the Journal is to highlight multi-scale phenomena involved in physical and/or chemical behaviors in the context of both classical and new unsolved problems of thermal physics, fluid mechanics, and interfacial phenomena. This goal is fulfilled by publishing novel research on experimental, theoretical and computational methods, assigning priority to comprehensive works covering at least two of the above three approaches. The scope of the Journal covers interdisciplinary areas of physics of fluids, heat and mass transfer, physical chemistry and engineering in macro-, meso-, micro-, and nano-scale. As such review papers, full-length articles and short communications are sought on the following areas: intense heat and mass transfer systems; flows in channels and complex fluid systems; physics of contact line, wetting and thermocapillary flows; instabilities and flow patterns; two-phase systems behavior including films, drops, rivulets, spray, jets, and bubbles; phase change phenomena such as boiling, evaporation, condensation and solidification; multi-scaled textured, soft or heterogeneous surfaces; and gravity dependent phenomena, e.g. processes in micro- and hyper-gravity. The Journal may also consider significant contributions related to the development of innovative experimental techniques, and instrumentation demonstrating advancement of science in the focus areas of this journal.