Parameter Space Visualization for Large-scale Datasets Using Parallel Coordinate Plots

Kurtis Glendenning, T. Wischgoll, Jack Harris, R. Vickery, L. Blaha
{"title":"Parameter Space Visualization for Large-scale Datasets Using Parallel Coordinate Plots","authors":"Kurtis Glendenning, T. Wischgoll, Jack Harris, R. Vickery, L. Blaha","doi":"10.2352/ISSN.2470-1173.2016.1.VDA-490","DOIUrl":null,"url":null,"abstract":"Visualization is an important task in data analytics, as it allows researchers to view patterns within the data instead of reading through extensive raw data. Allowing the ability to interact with the visualizations is an essential aspect since it provide the ability to intuitively explore data to find meaning and patterns more efficiently. Interactivity, however, becomes progressively more difficult as the size of the dataset increases. This project begins by leveraging existing web-based data visualization technologies and extends their functionality through the use of parallel processing. This methodology utilizes state-ofthe-art techniques, such as Node.js, to split the visualization rendering and user interactivity controls between a client-server infrastructure without having to rebuild the visualization technologies. The approach minimizes data transfer by performing the rendering step on the server while allowing for the use of HPC systems to render the visualizations more quickly. In order to improve the scaling of the system with larger datasets, parallel processing and visualization optimization techniques are used. This work will use parameter space data generated from mindmodeling.org to showcase our methodology for handling large-scale datasets while retaining interactivity and user friendliness.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"204 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Visualization is an important task in data analytics, as it allows researchers to view patterns within the data instead of reading through extensive raw data. Allowing the ability to interact with the visualizations is an essential aspect since it provide the ability to intuitively explore data to find meaning and patterns more efficiently. Interactivity, however, becomes progressively more difficult as the size of the dataset increases. This project begins by leveraging existing web-based data visualization technologies and extends their functionality through the use of parallel processing. This methodology utilizes state-ofthe-art techniques, such as Node.js, to split the visualization rendering and user interactivity controls between a client-server infrastructure without having to rebuild the visualization technologies. The approach minimizes data transfer by performing the rendering step on the server while allowing for the use of HPC systems to render the visualizations more quickly. In order to improve the scaling of the system with larger datasets, parallel processing and visualization optimization techniques are used. This work will use parameter space data generated from mindmodeling.org to showcase our methodology for handling large-scale datasets while retaining interactivity and user friendliness.
基于平行坐标图的大规模数据集参数空间可视化
可视化是数据分析中的一项重要任务,因为它允许研究人员查看数据中的模式,而不是阅读大量的原始数据。允许与可视化交互的能力是一个重要方面,因为它提供了直观地探索数据以更有效地找到意义和模式的能力。然而,随着数据集规模的增加,交互性变得越来越困难。该项目首先利用现有的基于web的数据可视化技术,并通过使用并行处理扩展其功能。这种方法利用最先进的技术,如Node.js,在客户机-服务器基础设施之间分离可视化呈现和用户交互控制,而无需重新构建可视化技术。该方法通过在服务器上执行呈现步骤来最大限度地减少数据传输,同时允许使用HPC系统更快地呈现可视化。为了提高系统在大数据集下的可扩展性,采用了并行处理和可视化优化技术。这项工作将使用mindmodeling.org上生成的参数空间数据来展示我们处理大规模数据集的方法,同时保持交互性和用户友好性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信