Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Xiaoliang Fan, Jin Sui, Naifeng He, Bi Zhang, Chunguang Bu, Junbo Yang, Lele Cui
{"title":"Adaptive PID Trajectory Tracking Algorithm Using Q-Learning for Mobile Robots","authors":"Xiaoliang Fan, Jin Sui, Naifeng He, Bi Zhang, Chunguang Bu, Junbo Yang, Lele Cui","doi":"10.1109/CYBER55403.2022.9907573","DOIUrl":null,"url":null,"abstract":"Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Q-learning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"21 1","pages":"1112-1117"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBER55403.2022.9907573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Classical PID controllers usually rely on some prior knowledge to manually adjust the gains of the controller and determine them. However, when the mobile robot works in a complex and changeable environment, the fixed PID gains may be difficult to meet the needs of the robot trajectory tracking accuracy. Therefore, this paper proposes a Q-learning-based adaptive PID trajectory tracking algorithm. Firstly, we construct a trajectory tracking Q-PID controller based on the error model of mobile robot. Then, the Q-learning algorithm is used to adaptively adjust the gains of the PID controller online. Meanwhile, the incremental active learning exploration method is used to improve learning efficiency and adaptability of agent. Finally, we use simulation experiments to verify the high performance of our algorithm.
基于q -学习的移动机器人自适应PID轨迹跟踪算法
传统的PID控制器通常依靠一些先验知识来手动调整控制器的增益并确定它们。然而,当移动机器人工作在复杂多变的环境中时,固定的PID增益可能难以满足机器人轨迹跟踪精度的需要。因此,本文提出了一种基于q学习的自适应PID轨迹跟踪算法。首先,基于移动机器人的误差模型,构造了轨迹跟踪Q-PID控制器。然后,利用q -学习算法对PID控制器的增益进行在线自适应调整。同时,采用渐进式主动学习探索方法,提高智能体的学习效率和适应性。最后,通过仿真实验验证了算法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信