Artificial Neural Networks and Their Applications in Business

Q1 Computer Science
Trevor J. Bihl, William A. Young II, G. Weckman
{"title":"Artificial Neural Networks and Their Applications in Business","authors":"Trevor J. Bihl, William A. Young II, G. Weckman","doi":"10.4018/978-1-5225-2255-3.CH576","DOIUrl":null,"url":null,"abstract":"Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in big data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering, and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) to highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs are then discussed. Common pre- and post-data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business-related endeavors for further reading.","PeriodicalId":52560,"journal":{"name":"Foundations and Trends in Human-Computer Interaction","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Human-Computer Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-2255-3.CH576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in big data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering, and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) to highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs are then discussed. Common pre- and post-data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business-related endeavors for further reading.
人工神经网络及其在商业中的应用
尽管人类在识别和解释模式方面具有天然优势,但大型和复杂的数据集(如大数据)阻碍了人类的有效分析。人工神经网络(ANN)提供了一系列模式识别方法,用于预测、聚类和分类,适用于具有ANN模型复杂性的KDD,从简单(用于小问题)到高度复杂(用于大问题)。为了给读者提供一个起点,本章首先描述了与人工神经网络相关的基本概念。然后讨论了常用的人工神经网络方法、启发式方法和初始化人工神经网络的标准。然后描述了用于降维和数据质量问题的常见数据前后处理方法。作者随后提供了一个人工神经网络分析的教程示例。最后,作者列出并描述了人工神经网络在特定商业相关领域的应用,以供进一步阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations and Trends in Human-Computer Interaction
Foundations and Trends in Human-Computer Interaction Computer Science-Computer Science Applications
CiteScore
10.10
自引率
0.00%
发文量
2
期刊介绍: Foundations and Trends® in Human-Computer Interaction publishes surveys and tutorials in the following topics: - History of the research community - Design and Evaluation - Theory - Technology - Computer Supported Cooperative Work - Interdisciplinary influence - Advanced topics and trends - Information visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信