Robust correspondence analysis

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Marco Riani, Anthony C. Atkinson, Francesca Torti, Aldo Corbellini
{"title":"Robust correspondence analysis","authors":"Marco Riani,&nbsp;Anthony C. Atkinson,&nbsp;Francesca Torti,&nbsp;Aldo Corbellini","doi":"10.1111/rssc.12580","DOIUrl":null,"url":null,"abstract":"<p>Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.</p>","PeriodicalId":49981,"journal":{"name":"Journal of the Royal Statistical Society Series C-Applied Statistics","volume":"71 5","pages":"1381-1401"},"PeriodicalIF":1.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12580","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series C-Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12580","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Correspondence analysis is a method for the visual display of information from two-way contingency tables. We introduce a robust form of correspondence analysis based on minimum covariance determinant estimation. This leads to the systematic deletion of outlying rows of the table and to plots of greatly increased informativeness. Our examples are trade flows of clothes and consumer evaluations of the perceived properties of cars. The robust method requires that a specified proportion of the data be used in fitting. To accommodate this requirement we provide an algorithm that uses a subset of complete rows and one row partially, both sets of rows being chosen robustly. We prove the convergence of this algorithm.

Abstract Image

鲁棒对应分析
对应分析是一种直观显示双向列联表信息的方法。我们介绍了一种基于最小协方差行列式估计的稳健的对应分析形式。这导致系统地删除了表格的外围行,并大大增加了信息量。我们的例子是服装的贸易流动和消费者对汽车感知特性的评估。鲁棒方法要求在拟合中使用一定比例的数据。为了满足这一需求,我们提供了一种算法,该算法使用完整行的子集和部分行的子集,这两组行都被健壮地选择。证明了该算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal of the Royal Statistical Society, Series C (Applied Statistics) is a journal of international repute for statisticians both inside and outside the academic world. The journal is concerned with papers which deal with novel solutions to real life statistical problems by adapting or developing methodology, or by demonstrating the proper application of new or existing statistical methods to them. At their heart therefore the papers in the journal are motivated by examples and statistical data of all kinds. The subject-matter covers the whole range of inter-disciplinary fields, e.g. applications in agriculture, genetics, industry, medicine and the physical sciences, and papers on design issues (e.g. in relation to experiments, surveys or observational studies). A deep understanding of statistical methodology is not necessary to appreciate the content. Although papers describing developments in statistical computing driven by practical examples are within its scope, the journal is not concerned with simply numerical illustrations or simulation studies. The emphasis of Series C is on case-studies of statistical analyses in practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信